全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Nitrosative/Oxidative Stress Conditions Regulate Thioredoxin-Interacting Protein (TXNIP) Expression and Thioredoxin-1 (TRX-1) Nuclear Localization

DOI: 10.1371/journal.pone.0084588

Full-Text   Cite this paper   Add to My Lib

Abstract:

Thioredoxin (TRX-1) is a multifunctional protein that controls the redox status of other proteins. TRX-1 can be found in the extracellular milieu, cytoplasm and nucleus, and it has distinct functions in each environment. Previously, we studied the intracellular localization of TRX-1 and its relationship with the activation of the p21Ras - ERK1/2 MAP Kinases signaling pathway. In situations where this pathway was activated by stress conditions evoked by a nitrosothiol, S-nitroso-N-acetylpenicillamine (SNAP), TRX-1 accumulated in the nuclear compartment due to nitrosylation of p21Ras and activation of downstream ERK1/2 MAP kinases. Presently, we demonstrate that ERK1/2 MAP Kinases activation and spatial distribution within cells trigger TRX-1 nuclear translocation through down-regulation of the physiological inhibitor of TRX-1, Thioredoxin Interacting Protein (TXNIP). Once activated by the oxidants, SNAP and H2O2, the ERK1/2 MAP kinases migrate to the nucleus. This is correlated with down-regulation of TXNIP. In the presence of the MEK inhibitors (PD98059 or UO126), or in cells transfected with the Protein Enriched in Astrocytes (PEA-15), a cytoplasmic anchor of ERK1/2 MAP kinases, TRX-1 nuclear migration and TXNIP down-regulation are no longer observed in cells exposed to oxidants. On the other hand, over-expression of TXNIP abolishes nuclear migration of TRX-1 under nitrosative/oxidative stress conditions, whereas gene silencing of TXNIP facilitates nuclear migration even in the absence of stress conditions. Studies based on the TXNIP promoter support this regulation. In conclusion, changes in TRX-1 compartmentalization under nitrosative/oxidative stress conditions are dependent on the expression levels of TXNIP, which are regulated by cellular compartmentalization and activation of the ERK1/2 MAP kinases.

References

[1]  Holmgren A (1985) Thioredoxin. Annu Rev Biochem 54: 237-271. doi:10.1146/annurev.bi.54.070185.001321. PubMed: 3896121.
[2]  Nakamura H, Nakamura K, Yodoi J (1997) Redox regulation of cellular activation. Annual Rev Immunol 15: 351-369. doi:10.1146/annurev.immunol.15.1.351.
[3]  Arai RJ, Masutani H, Yodoi J, Debbas V, Laurindo FR et al. (2006) Nitric oxide induces thioredoxin-1 nuclear translocation: possible association with the p21Ras survival pathway. Biochem Biophys Res Commun 348: 1254-1260. doi:10.1016/j.bbrc.2006.07.178. PubMed: 16914115.
[4]  Bai J, Nakamura H, Kwon Y-W, Hattori H, Yamaguchi Y et al. (2003) Critical roles of thioredoxin in nerve growth factor-mediated signal transduction and neurite outgrowth in PC12 cells. J Neurosc 23: 503-509. PubMed: 12533610.
[5]  Chen KS, DeLuca HF (1994) Isolation and characterization of a novel cDNA from HL-60 cells treated with 1,25-dihydroxyvitamin D-3. Biochim Biophys Acta 1219: 26-32. doi:10.1016/0167-4781(94)90242-9. PubMed: 8086474.
[6]  Nishiyama A, Matsui M, Iwata S, Hirota K, Masutani H et al. (1999) Identification of thioredoxin-binding protein-2/vitamin D(3) up-regulated protein 1 as a negative regulator of thioredoxin function and expression. J Biol Chem 274: 21645-21650. doi:10.1074/jbc.274.31.21645. PubMed: 10419473.
[7]  Nishinaka Y, Masutani H, Oka S, Matsuo Y, Yamaguchi Y et al. (2004) Importin alpha1 (Rch1) mediates nuclear translocation of thioredoxin-binding protein-2/vitamin D(3)-up-regulated protein 1. J Biol Chem 279: 37559-37565. doi:10.1074/jbc.M405473200. PubMed: 15234975.
[8]  Wang Y, De Keulenaer GW, Lee RT (2002) Vitamin D(3)-up-regulated protein-1 is a stress-responsive gene that regulates cardiomyocyte viability through interaction with thioredoxin. J Biol Chem 277: 26496-26500. doi:10.1074/jbc.M202133200. PubMed: 12011048.
[9]  Schulze PC, Liu H, Choe E, Yoshioka J, Shalev A et al. (2006) Nitric oxide-dependent suppression of thioredoxin-interacting protein expression enhances thioredoxin activity. Arterioscler Thromb Vasc Biol 26: 2666-2672. doi:10.1161/01.ATV.0000248914.21018.f1. PubMed: 17023680.
[10]  Liyanage NPM, Fernando MR, Lou MF (2007) Regulation of the bioavailability of thioredoxin in the lens by a specific thioredoxin-binding protein (TBP-2). Exp Eye Re. 85: 270-279. doi:10.1016/j.exer.2007.05.001. PubMed: 17603038.
[11]  Arnér ES, Holmgren A (2000) Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem 267: 6102-6109. doi:10.1046/j.1432-1327.2000.01701.x. PubMed: 11012661.
[12]  Schulze PC, Yoshioka J, Takahashi T, He Z, King GL et al. (2004) Hyperglycemia promotes oxidative stress through inhibition of thioredoxin function by thioredoxin-interacting protein. J Biol Chem 279: 30369-30374. doi:10.1074/jbc.M400549200. PubMed: 15128745.
[13]  Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254. doi:10.1016/0003-2697(76)90527-3. PubMed: 942051.
[14]  Flohé L, Günzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105: 114-120. doi:10.1016/S0076-6879(84)05015-1. PubMed: 6727659.
[15]  Aebi H (1984) Catalase in vitro. Methods Enzymol 105: 121-126. doi:10.1016/S0076-6879(84)05016-3. PubMed: 6727660.
[16]  Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408. doi:10.1006/meth.2001.1262. PubMed: 11846609.
[17]  Batista WL, Ogata FT, Curcio MF, Miguel RB, Arai RJ et al. (2013) S-Nitrosoglutathione and Endothelial Nitric Oxide Synthase-Derived Nitric Oxide Regulate Compartmentalized Ras S-Nitrosylation and Stimulate. Cell Proliferation - Antioxid Redox Signal 18: 221-238. doi:10.1089/ars.2011.4455.
[18]  Eu JP, Zeng M, Stamler JS (2000) An apoptotic model for nitrosative stress. Biochemistry 39: 1040-1047. doi:10.1021/bi992046e. PubMed: 10653649.
[19]  Formstecher E, Ramos JW, Fauquet M, Calderwood DA, Hsieh JC et al. (2001) PEA-15 mediates cytoplasmic sequestration of ERK MAP kinase. Dev Cell 1: 239-250. doi:10.1016/S1534-5807(01)00035-1. PubMed: 11702783.
[20]  Meuillet EJ, Mahadevan D, Berggren M, Coon A, Powis G (2004) Thioredoxin-1 binds to the C2 domain of PTEN inhibiting PTEN's lipid phosphatase activity and membrane binding: a mechanism for the functional loss of PTEN's tumor suppressor activity. Arch Biochem Biophys 429: 123-133. doi:10.1016/j.abb.2004.04.020. PubMed: 15313215.
[21]  Chen H-L, Zhou H-X (2005) Prediction of interface residues in protein-protein complexes by a consensus neural network method: test against NMR data. Proteins 61: 21-35. doi:10.1002/prot.20514. PubMed: 16080151.
[22]  Ferre F, Clote P (2006) DiANNA 1.1: an extension of the DiANNA web server for ternary cysteine classification. Nucleic Acids Res 34: (Web Server issue) W182-W185.
[23]  Yu L, Domann FE (2006) Rapid and direct quantitative RT-PCR method to measure promoter activity. Biotechnol Prog 22: 1461-1463. PubMed: 17022688.
[24]  Hirota K, Murata M, Sachi Y, Nakamura H, Takeuchi J et al. (1999) Distinct roles of thioredoxin in the cytoplasm and in the nucleus. A two-step mechanism of redox regulation of transcription factor NF-kappaB. J Biol Chem 274: 27891-27897. doi:10.1074/jbc.274.39.27891. PubMed: 10488136.
[25]  Hirota K, Matsui M, Iwata S, Nishiyama A, Mori K et al. (1997) AP-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1. Proc Natl Acad Sci U S A 94: 3633-3638. PubMed: 9108029.
[26]  Akamatsu Y, Ohno T, Hirota K, Kagoshima H, Yodoi J et al. (1997) Redox regulation of the DNA binding activity in transcription factor PEBP2. The roles of two conserved cysteine residues. J Biol Chem 272: 14497-14500. doi:10.1074/jbc.272.23.14497. PubMed: 9169404.
[27]  Ueno M, Masutani H, Arai RJ, Yamauchi A, Hirota K et al. (1999) Thioredoxin-dependent redox regulation of p53-mediated p21 activation. J Biol Chem 274: 35809-35815. doi:10.1074/jbc.274.50.35809. PubMed: 10585464.
[28]  Schonhoff CM, Bulseco DA, Brancho DM, Parada LF, Ross AH (2001) The Ras-ERK pathway is required for the induction of neuronal nitric oxide synthase in differentiating PC12 cells. J Neurochem 78: 631-639. doi:10.1046/j.1471-4159.2001.00432.x. PubMed: 11483666.
[29]  Deora AA, Hajjar DP, Lander HM (2000) Recruitment and activation of Raf-1 kinase by nitric oxide-activated Ras. Biochemistry 39: 9901-9908. doi:10.1021/bi992954b. PubMed: 10933809.
[30]  Oliveira CJR, Schindler F, Ventura AM, Morais MS, Arai RJ et al. (2003) Nitric oxide and cGMP activate the Ras-MAP kinase pathway-stimulating protein tyrosine phosphorylation in rabbit aortic endothelial cells. Free Radic Biol Med 35: 381-396. doi:10.1016/S0891-5849(03)00311-3. PubMed: 12899940.
[31]  Oliveira CJR, Curcio MF, Moraes MS, Tsujita M, Travassos LR et al. (2008) The low molecular weight S-nitrosothiol, S-nitroso-N-acetylpenicillamine, promotes cell cycle progression in rabbit aortic endothelial cells. Nitric Oxide 18: 241-255. doi:10.1016/j.niox.2008.02.001. PubMed: 18291122.
[32]  Pouysségur J, Volmat V, Lenormand P (2002) Fidelity and spatio-temporal control in MAP kinase (ERKs) signaling. Biochem Pharmacol 64: 755-763. doi:10.1016/S0006-2952(02)01135-8. PubMed: 12213567.
[33]  Murphy LO, Blenis J (2006) MAPK signal specificity: the right place at the right time. Trends Biochem Sci 31: 268-275. doi:10.1016/j.tibs.2006.03.009. PubMed: 16603362.
[34]  Haling JR, Wang F, Ginsberg MH (2010) Phosphoprotein enriched in astrocytes 15 kDa (PEA-15) reprograms growth factor signaling by inhibiting threonine phosphorylation of fibroblast receptor substrate 2α. Mol Biol Cell 21: 664-673. doi:10.1091/mbc.E09-08-0659. PubMed: 20032303.
[35]  Schulze PC, De Keulenaer GW, Yoshioka J, Kassik KA, Lee RT (2002) Vitamin D3-upregulated protein-1 (VDUP-1) regulates redox-dependent vascular smooth muscle cell proliferation through interaction with thioredoxin. Circ Res 91: 689-695. doi:10.1161/01.RES.0000037982.55074.F6. PubMed: 12386145.
[36]  Junn E, Han SH, Im JY, Yang Y, Cho EW et al. (2000) Vitamin D3 up-regulated protein 1 mediates oxidative stress via suppressing the thioredoxin function. J Immunol 164: 6287-6295. PubMed: 10843682.
[37]  Turturro F, Von Burton G, Friday E (2007) Hyperglycemia-induced thioredoxin-interacting protein expression differs in breast cancer-derived cells and regulates paclitaxel IC50. Clin Cancer Res 13: 3724-3730. doi:10.1158/1078-0432.CCR-07-0244. PubMed: 17575238.
[38]  Minn AH, Hafele C, Shalev A (2005) Thioredoxin-interacting protein is stimulated by glucose through a carbohydrate response element and induces beta-cell apoptosis. Endocrinology 146: 2397-2405. doi:10.1210/en.2004-1378. PubMed: 15705778.
[39]  Stoltzman CA, Peterson CW, Breen KT, Muoio DM, Billin AN et al. (2008) Glucose sensing by MondoA:Mlx complexes: a role for hexokinases and direct regulation of thioredoxin-interacting protein expression. Proc Natl Acad Sci U S A 105: 6912-6917. doi:10.1073/pnas.0712199105. PubMed: 18458340.
[40]  Yu FX, Goh SR, Dai RP, Luo Y (2009) Adenosine-containing molecules amplify glucose signaling and enhance txnip expression. Mol Endocrinol 23: 932-942. doi:10.1210/me.2008-0383. PubMed: 19246513.
[41]  Stoltzman CA, Kaadige MR, Peterson CW, Ayer DE (2011) MondoA senses non-glucose sugars: regulation of thioredoxin-interacting protein (TXNIP) and the hexose transport curb. J Biol Chem 286: 38027-38034. doi:10.1074/jbc.M111.275503. PubMed: 21908621.
[42]  Kaadige MR, Looper RE, Kamalanaadhan S, Ayer DE (2009) Glutamine-dependent anapleurosis dictates glucose uptake and cell growth by regulating MondoA transcriptional activity. Proc Natl Acad Sci U S A 106: 14878-14883. doi:10.1073/pnas.0901221106. PubMed: 19706488.
[43]  Chen J, Fontes G, Saxena G, Poitout V, Shalev A (2010) Lack of TXNIP protects against mitochondria-mediated apoptosis but not against fatty acid-induced ER stress-mediated beta-cell death. Diabetes 59: 440-447. doi:10.2337/db09-0949. PubMed: 19875615.
[44]  Butler LM, Zhou X, Xu W-S, Scher HI, Rifkind RA et al. (2002) The histone deacetylase inhibitor SAHA arrests cancer cell growth, up-regulates thioredoxin-binding protein-2 and down-regulates thioredoxin. Proc Natl Acad Sci U S A 99: 11700-11705. doi:10.1073/pnas.182372299. PubMed: 12189205.
[45]  Sheth SS, Bodnar JS, Ghazalpour A, Thipphavong CK, Tsutsumi S et al. (2006) Hepatocellular carcinoma in TXNIP-deficient mice. Oncogene 25: 3528-3536. doi:10.1038/sj.onc.1209394. PubMed: 16607285.
[46]  Nishizawa K, Nishiyama H, Matsui Y, Kobayashi T, Saito R et al. (2011) Thioredoxin-interacting protein suppresses bladder carcinogenesis. Carcinogenesis 32: 1459-1466. doi:10.1093/carcin/bgr137. PubMed: 21771725.
[47]  Masaki S, Masutani H, Yoshihara E, Yodoi J (2012) Deficiency of thioredoxin binding protein-2 (TBP-2) enhances TGF-β signaling and promotes epithelial to mesenchymal transition. PLOS ONE 7(6): e39900. doi:10.1371/journal.pone.0039900. PubMed: 22768160.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133