[1] | Holmgren A (1985) Thioredoxin. Annu Rev Biochem 54: 237-271. doi:10.1146/annurev.bi.54.070185.001321. PubMed: 3896121.
|
[2] | Nakamura H, Nakamura K, Yodoi J (1997) Redox regulation of cellular activation. Annual Rev Immunol 15: 351-369. doi:10.1146/annurev.immunol.15.1.351.
|
[3] | Arai RJ, Masutani H, Yodoi J, Debbas V, Laurindo FR et al. (2006) Nitric oxide induces thioredoxin-1 nuclear translocation: possible association with the p21Ras survival pathway. Biochem Biophys Res Commun 348: 1254-1260. doi:10.1016/j.bbrc.2006.07.178. PubMed: 16914115.
|
[4] | Bai J, Nakamura H, Kwon Y-W, Hattori H, Yamaguchi Y et al. (2003) Critical roles of thioredoxin in nerve growth factor-mediated signal transduction and neurite outgrowth in PC12 cells. J Neurosc 23: 503-509. PubMed: 12533610.
|
[5] | Chen KS, DeLuca HF (1994) Isolation and characterization of a novel cDNA from HL-60 cells treated with 1,25-dihydroxyvitamin D-3. Biochim Biophys Acta 1219: 26-32. doi:10.1016/0167-4781(94)90242-9. PubMed: 8086474.
|
[6] | Nishiyama A, Matsui M, Iwata S, Hirota K, Masutani H et al. (1999) Identification of thioredoxin-binding protein-2/vitamin D(3) up-regulated protein 1 as a negative regulator of thioredoxin function and expression. J Biol Chem 274: 21645-21650. doi:10.1074/jbc.274.31.21645. PubMed: 10419473.
|
[7] | Nishinaka Y, Masutani H, Oka S, Matsuo Y, Yamaguchi Y et al. (2004) Importin alpha1 (Rch1) mediates nuclear translocation of thioredoxin-binding protein-2/vitamin D(3)-up-regulated protein 1. J Biol Chem 279: 37559-37565. doi:10.1074/jbc.M405473200. PubMed: 15234975.
|
[8] | Wang Y, De Keulenaer GW, Lee RT (2002) Vitamin D(3)-up-regulated protein-1 is a stress-responsive gene that regulates cardiomyocyte viability through interaction with thioredoxin. J Biol Chem 277: 26496-26500. doi:10.1074/jbc.M202133200. PubMed: 12011048.
|
[9] | Schulze PC, Liu H, Choe E, Yoshioka J, Shalev A et al. (2006) Nitric oxide-dependent suppression of thioredoxin-interacting protein expression enhances thioredoxin activity. Arterioscler Thromb Vasc Biol 26: 2666-2672. doi:10.1161/01.ATV.0000248914.21018.f1. PubMed: 17023680.
|
[10] | Liyanage NPM, Fernando MR, Lou MF (2007) Regulation of the bioavailability of thioredoxin in the lens by a specific thioredoxin-binding protein (TBP-2). Exp Eye Re. 85: 270-279. doi:10.1016/j.exer.2007.05.001. PubMed: 17603038.
|
[11] | Arnér ES, Holmgren A (2000) Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem 267: 6102-6109. doi:10.1046/j.1432-1327.2000.01701.x. PubMed: 11012661.
|
[12] | Schulze PC, Yoshioka J, Takahashi T, He Z, King GL et al. (2004) Hyperglycemia promotes oxidative stress through inhibition of thioredoxin function by thioredoxin-interacting protein. J Biol Chem 279: 30369-30374. doi:10.1074/jbc.M400549200. PubMed: 15128745.
|
[13] | Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254. doi:10.1016/0003-2697(76)90527-3. PubMed: 942051.
|
[14] | Flohé L, Günzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105: 114-120. doi:10.1016/S0076-6879(84)05015-1. PubMed: 6727659.
|
[15] | Aebi H (1984) Catalase in vitro. Methods Enzymol 105: 121-126. doi:10.1016/S0076-6879(84)05016-3. PubMed: 6727660.
|
[16] | Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408. doi:10.1006/meth.2001.1262. PubMed: 11846609.
|
[17] | Batista WL, Ogata FT, Curcio MF, Miguel RB, Arai RJ et al. (2013) S-Nitrosoglutathione and Endothelial Nitric Oxide Synthase-Derived Nitric Oxide Regulate Compartmentalized Ras S-Nitrosylation and Stimulate. Cell Proliferation - Antioxid Redox Signal 18: 221-238. doi:10.1089/ars.2011.4455.
|
[18] | Eu JP, Zeng M, Stamler JS (2000) An apoptotic model for nitrosative stress. Biochemistry 39: 1040-1047. doi:10.1021/bi992046e. PubMed: 10653649.
|
[19] | Formstecher E, Ramos JW, Fauquet M, Calderwood DA, Hsieh JC et al. (2001) PEA-15 mediates cytoplasmic sequestration of ERK MAP kinase. Dev Cell 1: 239-250. doi:10.1016/S1534-5807(01)00035-1. PubMed: 11702783.
|
[20] | Meuillet EJ, Mahadevan D, Berggren M, Coon A, Powis G (2004) Thioredoxin-1 binds to the C2 domain of PTEN inhibiting PTEN's lipid phosphatase activity and membrane binding: a mechanism for the functional loss of PTEN's tumor suppressor activity. Arch Biochem Biophys 429: 123-133. doi:10.1016/j.abb.2004.04.020. PubMed: 15313215.
|
[21] | Chen H-L, Zhou H-X (2005) Prediction of interface residues in protein-protein complexes by a consensus neural network method: test against NMR data. Proteins 61: 21-35. doi:10.1002/prot.20514. PubMed: 16080151.
|
[22] | Ferre F, Clote P (2006) DiANNA 1.1: an extension of the DiANNA web server for ternary cysteine classification. Nucleic Acids Res 34: (Web Server issue) W182-W185.
|
[23] | Yu L, Domann FE (2006) Rapid and direct quantitative RT-PCR method to measure promoter activity. Biotechnol Prog 22: 1461-1463. PubMed: 17022688.
|
[24] | Hirota K, Murata M, Sachi Y, Nakamura H, Takeuchi J et al. (1999) Distinct roles of thioredoxin in the cytoplasm and in the nucleus. A two-step mechanism of redox regulation of transcription factor NF-kappaB. J Biol Chem 274: 27891-27897. doi:10.1074/jbc.274.39.27891. PubMed: 10488136.
|
[25] | Hirota K, Matsui M, Iwata S, Nishiyama A, Mori K et al. (1997) AP-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1. Proc Natl Acad Sci U S A 94: 3633-3638. PubMed: 9108029.
|
[26] | Akamatsu Y, Ohno T, Hirota K, Kagoshima H, Yodoi J et al. (1997) Redox regulation of the DNA binding activity in transcription factor PEBP2. The roles of two conserved cysteine residues. J Biol Chem 272: 14497-14500. doi:10.1074/jbc.272.23.14497. PubMed: 9169404.
|
[27] | Ueno M, Masutani H, Arai RJ, Yamauchi A, Hirota K et al. (1999) Thioredoxin-dependent redox regulation of p53-mediated p21 activation. J Biol Chem 274: 35809-35815. doi:10.1074/jbc.274.50.35809. PubMed: 10585464.
|
[28] | Schonhoff CM, Bulseco DA, Brancho DM, Parada LF, Ross AH (2001) The Ras-ERK pathway is required for the induction of neuronal nitric oxide synthase in differentiating PC12 cells. J Neurochem 78: 631-639. doi:10.1046/j.1471-4159.2001.00432.x. PubMed: 11483666.
|
[29] | Deora AA, Hajjar DP, Lander HM (2000) Recruitment and activation of Raf-1 kinase by nitric oxide-activated Ras. Biochemistry 39: 9901-9908. doi:10.1021/bi992954b. PubMed: 10933809.
|
[30] | Oliveira CJR, Schindler F, Ventura AM, Morais MS, Arai RJ et al. (2003) Nitric oxide and cGMP activate the Ras-MAP kinase pathway-stimulating protein tyrosine phosphorylation in rabbit aortic endothelial cells. Free Radic Biol Med 35: 381-396. doi:10.1016/S0891-5849(03)00311-3. PubMed: 12899940.
|
[31] | Oliveira CJR, Curcio MF, Moraes MS, Tsujita M, Travassos LR et al. (2008) The low molecular weight S-nitrosothiol, S-nitroso-N-acetylpenicillamine, promotes cell cycle progression in rabbit aortic endothelial cells. Nitric Oxide 18: 241-255. doi:10.1016/j.niox.2008.02.001. PubMed: 18291122.
|
[32] | Pouysségur J, Volmat V, Lenormand P (2002) Fidelity and spatio-temporal control in MAP kinase (ERKs) signaling. Biochem Pharmacol 64: 755-763. doi:10.1016/S0006-2952(02)01135-8. PubMed: 12213567.
|
[33] | Murphy LO, Blenis J (2006) MAPK signal specificity: the right place at the right time. Trends Biochem Sci 31: 268-275. doi:10.1016/j.tibs.2006.03.009. PubMed: 16603362.
|
[34] | Haling JR, Wang F, Ginsberg MH (2010) Phosphoprotein enriched in astrocytes 15 kDa (PEA-15) reprograms growth factor signaling by inhibiting threonine phosphorylation of fibroblast receptor substrate 2α. Mol Biol Cell 21: 664-673. doi:10.1091/mbc.E09-08-0659. PubMed: 20032303.
|
[35] | Schulze PC, De Keulenaer GW, Yoshioka J, Kassik KA, Lee RT (2002) Vitamin D3-upregulated protein-1 (VDUP-1) regulates redox-dependent vascular smooth muscle cell proliferation through interaction with thioredoxin. Circ Res 91: 689-695. doi:10.1161/01.RES.0000037982.55074.F6. PubMed: 12386145.
|
[36] | Junn E, Han SH, Im JY, Yang Y, Cho EW et al. (2000) Vitamin D3 up-regulated protein 1 mediates oxidative stress via suppressing the thioredoxin function. J Immunol 164: 6287-6295. PubMed: 10843682.
|
[37] | Turturro F, Von Burton G, Friday E (2007) Hyperglycemia-induced thioredoxin-interacting protein expression differs in breast cancer-derived cells and regulates paclitaxel IC50. Clin Cancer Res 13: 3724-3730. doi:10.1158/1078-0432.CCR-07-0244. PubMed: 17575238.
|
[38] | Minn AH, Hafele C, Shalev A (2005) Thioredoxin-interacting protein is stimulated by glucose through a carbohydrate response element and induces beta-cell apoptosis. Endocrinology 146: 2397-2405. doi:10.1210/en.2004-1378. PubMed: 15705778.
|
[39] | Stoltzman CA, Peterson CW, Breen KT, Muoio DM, Billin AN et al. (2008) Glucose sensing by MondoA:Mlx complexes: a role for hexokinases and direct regulation of thioredoxin-interacting protein expression. Proc Natl Acad Sci U S A 105: 6912-6917. doi:10.1073/pnas.0712199105. PubMed: 18458340.
|
[40] | Yu FX, Goh SR, Dai RP, Luo Y (2009) Adenosine-containing molecules amplify glucose signaling and enhance txnip expression. Mol Endocrinol 23: 932-942. doi:10.1210/me.2008-0383. PubMed: 19246513.
|
[41] | Stoltzman CA, Kaadige MR, Peterson CW, Ayer DE (2011) MondoA senses non-glucose sugars: regulation of thioredoxin-interacting protein (TXNIP) and the hexose transport curb. J Biol Chem 286: 38027-38034. doi:10.1074/jbc.M111.275503. PubMed: 21908621.
|
[42] | Kaadige MR, Looper RE, Kamalanaadhan S, Ayer DE (2009) Glutamine-dependent anapleurosis dictates glucose uptake and cell growth by regulating MondoA transcriptional activity. Proc Natl Acad Sci U S A 106: 14878-14883. doi:10.1073/pnas.0901221106. PubMed: 19706488.
|
[43] | Chen J, Fontes G, Saxena G, Poitout V, Shalev A (2010) Lack of TXNIP protects against mitochondria-mediated apoptosis but not against fatty acid-induced ER stress-mediated beta-cell death. Diabetes 59: 440-447. doi:10.2337/db09-0949. PubMed: 19875615.
|
[44] | Butler LM, Zhou X, Xu W-S, Scher HI, Rifkind RA et al. (2002) The histone deacetylase inhibitor SAHA arrests cancer cell growth, up-regulates thioredoxin-binding protein-2 and down-regulates thioredoxin. Proc Natl Acad Sci U S A 99: 11700-11705. doi:10.1073/pnas.182372299. PubMed: 12189205.
|
[45] | Sheth SS, Bodnar JS, Ghazalpour A, Thipphavong CK, Tsutsumi S et al. (2006) Hepatocellular carcinoma in TXNIP-deficient mice. Oncogene 25: 3528-3536. doi:10.1038/sj.onc.1209394. PubMed: 16607285.
|
[46] | Nishizawa K, Nishiyama H, Matsui Y, Kobayashi T, Saito R et al. (2011) Thioredoxin-interacting protein suppresses bladder carcinogenesis. Carcinogenesis 32: 1459-1466. doi:10.1093/carcin/bgr137. PubMed: 21771725.
|
[47] | Masaki S, Masutani H, Yoshihara E, Yodoi J (2012) Deficiency of thioredoxin binding protein-2 (TBP-2) enhances TGF-β signaling and promotes epithelial to mesenchymal transition. PLOS ONE 7(6): e39900. doi:10.1371/journal.pone.0039900. PubMed: 22768160.
|