全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Patterned-String Tasks: Relation between Fine Motor Skills and Visual-Spatial Abilities in Parrots

DOI: 10.1371/journal.pone.0085499

Full-Text   Cite this paper   Add to My Lib

Abstract:

String-pulling and patterned-string tasks are often used to analyse perceptual and cognitive abilities in animals. In addition, the paradigm can be used to test the interrelation between visual-spatial and motor performance. Two Australian parrot species, the galah (Eolophus roseicapilla) and the cockatiel (Nymphicus hollandicus), forage on the ground, but only the galah uses its feet to manipulate food. I used a set of string pulling and patterned-string tasks to test whether usage of the feet during foraging is a prerequisite for solving the vertical string pulling problem. Indeed, the two species used techniques that clearly differed in the extent of beak-foot coordination but did not differ in terms of their success in solving the string pulling task. However, when the visual-spatial skills of the subjects were tested, the galahs outperformed the cockatiels. This supports the hypothesis that the fine motor skills needed for advanced beak-foot coordination may be interrelated with certain visual-spatial abilities needed for solving patterned-string tasks. This pattern was also found within each of the two species on the individual level: higher motor abilities positively correlated with performance in patterned-string tasks. This is the first evidence of an interrelation between visual-spatial and motor abilities in non-mammalian animals.

References

[1]  MacLean EL, Matthews LJ, Hare BA, Nunn CL, Anderson RC et al. (2012) How does cognition evolve? Phylogenetic comparative psychology. Anim Cogn 15: 223-238. doi:10.1007/s10071-011-0448-8. PubMed: 21927850.
[2]  Balasch J, Sabater-Pi J, Padrosa T (1974) Perceptual learning ability in Mandrillus sphinx and Cercopithecus nictitans. Rev Esp Fisiol 30: 15–20. PubMed: 4216054.
[3]  Pepperberg IM (2004) “Insightful” string-pulling in Grey parrots (Psittacus erithacus) is affected by vocal competence. Anim Cogn 7: 263-266. doi:10.1007/s10071-004-0218-y. PubMed: 15045620.
[4]  Bagozkaya MS, Smirnova AA, Zorina ZA (2010) Comparative Study of the Ability to Solve a String-Pulling Task in Corvidae. Zhurnal Vysshei Nervnoi Deyatelnosti Imeni I P Pavlova 60: 321-329.
[5]  Tomasello M, Call J (1997) Primate cognition. Oxford University Press, USA.
[6]  Finch G (1941) The solution of patterned string problems by chimpanzees. J Comp Psychol 32: 83. doi:10.1037/h0056785.
[7]  Osthaus B, Lea SE, Slater AM (2005) Dogs (Canis lupus familiaris) fail to show understanding of means-end connections in a string-pulling task. Anim Cogn 8: 37-47. doi:10.1007/s10071-004-0230-2. PubMed: 15338446.
[8]  Whitt E, Douglas M, Osthaus B, Hocking I (2009) Domestic cats (Felis catus) do not show causal understanding in a string-pulling task. Anim Cogn 12: 739-743. doi:10.1007/s10071-009-0228-x. PubMed: 19449193.
[9]  Schuck-Paim C, Borsari A, Ottoni EB (2009) Means to an end: neotropical parrots manage to pull strings to meet their goals. Anim Cogn 12: 287-301. doi:10.1007/s10071-008-0190-z. PubMed: 18766389.
[10]  Seibt U, Wickler W (2006) Individuality in Problem Solving: String Pulling in Two Carduelis Species (Aves: Passeriformes). Ethology 112: 493-502. doi:10.1111/j.1439-0310.2005.01172.x.
[11]  Vince M (1961) String pulling in birds III. Successful Response in Greenfinches and Canaries Behaviour 17: 103-129.
[12]  Heinrich B, Bugnyar T (2005) Testing problem solving in ravens: String-pulling to reach food. Ethology 111: 962-976. doi:10.1111/j.1439-0310.2005.01133.x.
[13]  Huber L, Gajdon GK (2006) Technical intelligence in animals: the kea model. Anim Cogn 9: 295-305. doi:10.1007/s10071-006-0033-8. PubMed: 16909237.
[14]  Magat M, Brown C (2009) Laterality enhances cognition in Australian parrots. Proc Biol Sci 276: 4155-4162. doi:10.1098/rspb.2009.1397. PubMed: 19726480.
[15]  Skutch AF (1996) The minds of birds. Texas AandM University Press.
[16]  Altevogt R (1954) Uber Das "Schopfen" Einiger Vogelarten. Behaviour 6: 147-152. doi:10.1163/156853954X00086.
[17]  Paulin MG (1993) The role of the cerebellum in motor control and perception. Brain Behav Evol 41: 39-50. doi:10.1159/000113822. PubMed: 8431754.
[18]  van Mier HI, Petersen SE (2002) Role of the cerebellum in motor cognition. Ann N Y Acad Sci 978: 334-353. doi:10.1111/j.1749-6632.2002.tb07578.x. PubMed: 12582064.
[19]  Hokkanen LS, Kauranen V, Roine RO, Salonen O, Kotila M (2006) Subtle cognitive deficits after cerebellar infarcts. European Journal of Neurology 13: 161-170. doi:10.1111/j.1468-1331.2006.01157.x. PubMed: 16490047.
[20]  Kalashnikova LA, Zueva YV, Pugacheva OV, Korsakova NK (2005) Cognitive impairments in cerebellar infarcts. Neurosci Behav Physiol 35: 773-779. doi:10.1007/s11055-005-0123-0. PubMed: 16132255.
[21]  Molinari M, Petrosini L, Misciagna S, Leggio MG (2004) Visuospatial abilities in cerebellar disorders. J Neurol Neurosurg Psychiatry 75: 235-240. PubMed: 14742596.
[22]  Fink GR, Marshall JC, Shah NJ, Weiss PH, Halligan PW et al. (2000) Line bisection judgments implicate right parietal cortex and cerebellum as assessed by fMRI. Neurology 54: 1324-1331. doi:10.1212/WNL.54.6.1324. PubMed: 10746605.
[23]  Davis EE, Pitchford NJ, Limback E (2011) The interrelation between cognitive and motor development in typically developing children aged 4-11 years is underpinned by visual processing and fine manual control. Br J Psychol 102: 569-584. doi:10.1111/j.2044-8295.2011.02018.x. PubMed: 21752007.
[24]  Petrosini L, Leggio MG, Molinari M (1998) The cerebellum in the spatial problem solving: a co-star or a guest star? Prog Neurobiol 56: 191-210. doi:10.1016/S0301-0082(98)00036-7. PubMed: 9760701.
[25]  Chen G-H, Wang Y-J, Zhang L-Q, Zhou J-N (2004) Age- and sex-related disturbance in a battery of sensorimotor and cognitive tasks in Kunming mice. Physiology and Behavior 83: 531-541.
[26]  Paula-Barbosa MM Sobrinho-Sim?es MA (1976) An ultrastructural morphometric Study of mossy fiber endings in pigeon, rat and man. The Journal of Comparative Neurology 170: 365-379.
[27]  Clarke PG (1974) The organization of visual processing in the pigeon cerebellum. J Physiol 243: 267-285. PubMed: 4449063.
[28]  Sultan F, Glickstein M (2007) The cerebellum: comparative and animal studies. Cerebellum 6: 168-176. doi:10.1080/14734220701332486. PubMed: 17786812.
[29]  Spence RD, Zhen Y, White S, Schlinger BA, Day LB (2009) Recovery of motor and cognitive function after cerebellar lesions in a songbird – role of estrogens. Eur J Neurosci 29: 1225-1234. doi:10.1111/j.1460-9568.2009.06685.x. PubMed: 19302157.
[30]  Gagne M, Levesque K, Nutile L, Locurto C (2012) Performance on patterned string problems by common marmosets (Callithrix jacchus). Anim Cogn 15: 1021-1030. doi:10.1007/s10071-012-0511-0. PubMed: 22576582.
[31]  Pfuhl G (2012) Two strings to choose from: do ravens pull the easier one? Anim Cogn 15: 549-557. doi:10.1007/s10071-012-0483-0. PubMed: 22437450.
[32]  Collar NJ (1997) Family psittacidae (parrots). Handbook of the birds of the world 4: 280-477.
[33]  Forshaw JM (2010) Parrots of the world. Princeton University Press.
[34]  Jones D (1987) Feeding Ecology of the Cockatiel, Nymphicus hollandicus, in a Grain-Growing. Area - Wildlife Research 14: 105-115. doi:10.1071/WR9870105.
[35]  Rowley I (1990) Behavioural ecology of the Galah, Eolophus roseicapillus, in the wheatbelt of Western Australia. Hyperion Books.
[36]  Aidala Z, Huynen L, Brennan PR, Musser J, Fidler A et al. (2012) Ultraviolet visual sensitivity in three avian lineages: paleognaths, parrots, and passerines. Journal of Comparative Physiology A 198: 495-510. doi:10.1007/s00359-012-0724-3. PubMed: 22534772.
[37]  Bates D, Maechler M, Bolker B (2012) lme4: Linear mixed-effects models using S4 classes, 2011. R package version 0999375-42 . Available: .
[38]  RDevelopment C TEAM. (2006). R: A language and environment for statistical computing R Foundation for Statistical Computing.
[39]  Werdenich D, Huber L (2006) A case of quick problem solving in birds: string pulling in keas, Nestor notabilis. Animal Behaviour 71: 855-863. doi:10.1016/j.anbehav.2005.06.018.
[40]  Krasheninnikova A, Wanker R (2010) String-pulling in spectacled parrotlets (Forpus conspicillatus). Behaviour 147: 725-739. doi:10.1163/000579510X491072.
[41]  Krasheninnikova A, Br?ger S, Wanker R (2013) Means-end comprehension in four parrot species: explained by social complexity. Anim Cogn, 16: 755–64. PubMed: 23397182.
[42]  Pepperberg IM, Funk MS (1990) Object permanence in four species of psittacine birds: An African Grey parrot (Psittacus erithacus), an Illiger mini macaw (Ara maracana), a parakeet (Melopsittacus undulatus), and a cockatiel (Nymphicus hollandicus). Animal Learning and Behavior 18: 97-108. doi:10.3758/BF03205244.
[43]  Halsey LG, Bezerra BM, Souto AS (2006) Can wild common marmosets (Callithrix jacchus) solve the parallel strings task? Anim Cogn 9: 229-233. doi:10.1007/s10071-006-0016-9. PubMed: 16541239.
[44]  Bonvicino CR (1989) Ecologia e comportamento de Alouatta belzebul (Primates: Cebidae) na Mata Atlantica. Rev Nordestina Biol 6: 149-179.
[45]  Peres CA (2000) Identifying keystone plant resources in tropical forests: the case of gums from Parkia pods. Journal of Tropical Ecology 16: 287-317. doi:10.1017/S0266467400001413.
[46]  Cannon CE (1983) Descriptions of foraging behaviour of eastern and pale-headed rosellas. Bird Behavior 4: 63-70.
[47]  Randler C, Braun M, Lintker S (2011) Foot preferences in wild-living ring-necked parakeets (Psittacula krameri, Psittacidae). Laterality 16: 201-206. PubMed: 20521200.
[48]  Warburton LS, Perrin MR (2005) Foraging behaviour and feeding ecology of the Black-cheeked Lovebird Agapornis nigrigenis in Zambia. Ostrich 76: 118-129. doi:10.2989/00306520509485484.
[49]  Sultan F (2005) Why some bird brains are larger than others. Curr Biol 15: R649-R650. doi:10.1016/j.cub.2005.08.043. PubMed: 16139191.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133