[1] | Montesinos E (2007) Antimicrobial peptides and plant disease control. FEMS Microbiol Lett 270: 1-11. doi:10.1111/j.1574-6968.2007.00683.x. PubMed: 17371298.
|
[2] | Jack RW, Jung G (2000) Lantibiotics and microcins: polipeptides with unusual chemical diversity. Curr Opin Chem Biol 4: 310-317. doi:10.1016/S1367-5931(00)00094-6. PubMed: 10826980.
|
[3] | Cotter PD, Hill C, Ross P (2005) Bacterial lantibiotics: strategies to improve therapeutic potential. Curr Protein Pept Sci 6: 61-75. doi:10.2174/1389203053027584. PubMed: 15638769.
|
[4] | Raaijmakers JM, de Bruijn I, de Kock MJD (2006) Cyclic lipopeptide production by plant-associated Pseudomonas ssp: diversity, activity, biosynthesis, and regulation. Mol Plant-Microbe Interact 19: 699-710. doi:10.1094/MPMI-19-0699. PubMed: 16838783.
|
[5] | Degenkolb T, Berg A, Gams W, Schlegel B, Gr?fe U (2003) The occurrence of peptaibols and structurally related peptaibiotics in fungi and their mass spectrophotometric identification via diagnostic fragment ions. J Pept Sci 9: 666-678. doi:10.1002/psc.497. PubMed: 14658788.
|
[6] | Ng TB (2004) Peptides and proteins from fungi. Peptides 25: 1055-1073. doi:10.1016/j.peptides.2004.03.013. PubMed: 15203253.
|
[7] | Hancock REW (2001) Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect Dis 1: 156-164. doi:10.1016/S1473-3099(01)00092-5. PubMed: 11871492.
|
[8] | Bulet P, St?cklin R, Menin L (2004) Antimicrobial peptides: from invertebrates to vertebrates. Immunol Rev 198: 169-184. doi:10.1111/j.0105-2896.2004.0124.x. PubMed: 15199962.
|
[9] | Tincu JA, Taylor SW (2004) Antimicrobial peptides from marine invertebrates. Antimicrob Agents Chemother 48: 3645-3654. doi:10.1128/AAC.48.10.3645-3654.2004. PubMed: 15388415.
|
[10] | Zasloff M (2002) Antimicrobial peptides of multicellular organism. Nature 415: 389-395. doi:10.1038/415389a. PubMed: 11807545.
|
[11] | Toke O (2005) Antimicrobial peptides: new candidates in the fight against bacterial infections. Biopolymers 80: 717-735. doi:10.1002/bip.20286. PubMed: 15880793.
|
[12] | Lay FT, Anderson MA (2005) Defensin-components of the innate immune system in plants. Curr Protein Pept Sci 6: 85-101. doi:10.2174/1389203053027575. PubMed: 15638771.
|
[13] | Coca M, Pe?as G, Gómez J, Campo S, Bortolotti C et al. (2006) Enhanced resistance to the rice blast fungus Magnaporthe grisea conferred by expression of a cecropin A gene in transgenic rice. Planta 223: 392-406. doi:10.1007/s00425-005-0069-z. PubMed: 16240149.
|
[14] | Marcos JF, Mu?oz A, Pérez-Payá E, Misra S, López-García B (2008) Identification and rational design of novel antimicrobial peptides for plant protection. Annu Rev Phytopathol 46: 273-301. doi:10.1146/annurev.phyto.121307.094843. PubMed: 18439131.
|
[15] | Cleveland J, Montville TJ, Nes IF, Chikindas ML (2001) Bacteriocins: safe, natural antimicrobials for food preservation. Int J Food Microbiol 71: 1-20. doi:10.1016/S0168-1605(01)00560-8. PubMed: 11764886.
|
[16] | Cookse K (2000) Utilization of antimicrobial packaging films for inhibition of selected microorganisms. In: S. Risch. Food Packaging: Testing Methods and Applications. Washington DC: American Chemical Society. pp. 17-25.
|
[17] | Badosa E, Ferre R, Planas M, Feliu L, Besalú E et al. (2007) A library of linear undecapeptides with bactericidal activity against phytopathogenic bacteria. Peptides 28: 2276-2285. doi:10.1016/j.peptides.2007.09.010. PubMed: 17980935.
|
[18] | Ferre R, Badosa E, Feliu L, Planas M, Montesinos E et al. (2006) Inhibition of plant pathogenic bacteria by short synthetic cecropin A-melittin hybrid peptides. Appl Environ Microbiol 72: 3302-3308. doi:10.1128/AEM.72.5.3302-3308.2006. PubMed: 16672470.
|
[19] | Badosa E, Ferré R, Francés J, Bardají E, Feliu L et al. (2009) Sporicidal activity of synthetic antifungal undecapeptides and control of Penicillium rot of apples. Appl Environ Microbiol 75: 5563-5569. doi:10.1128/AEM.00711-09. PubMed: 19617390.
|
[20] | Montesinos E, Badosa E, Cabrefiga J, Planas M, Feliu L et al. (2012) Antimicrobial peptides for plant disease control. From discovery to application. In: K. RajasekaranJW CaryJM JaynesE. Montesinos. Small wonders: peptides for disease control. Washington DC: American Chemical Society. pp. 235-262.
|
[21] | Ferre R, Melo MN, Correia AD, Feliu L, Bardají E et al. (2009) Synergistic effects of the membrane actions of cecropin-melittin antimicrobial hybrid peptide BP100. Biophys J 96: 1815-1827. doi:10.1016/j.bpj.2008.11.053. PubMed: 19254540.
|
[22] | Eggenberger K, Mink C, Wadhwani P, Ulrich AS, Nick P (2011) Using the peptide BP100 as a cell-penetrating tool for the chemical engineering of actin filaments within living plant cells. Chembiochem 12: 132-137. doi:10.1002/cbic.201000402. PubMed: 21154994.
|
[23] | Basanta A, Herranz C, Gutiérrez J, Criado R, Hernández PE et al. (2009) Development of bacteriocinogenic strains of Saccharomyces cerevisiae heterologously expressing and secreting the leaderless enterocin L50 peptides L50A and L50B from Enterococcus faecium L50. Appl Environ Microbiol 75: 2382-2392. doi:10.1128/AEM.01476-08. PubMed: 19218405.
|
[24] | Morin KM, Arcidiacono S, Beckwitt R, Mello CM (2006) Recombinant expression of indolicidin concatamers in Escherichia coli. Appl Microbiol Biotechnol 70: 698-704. doi:10.1007/s00253-005-0132-5. PubMed: 16158282.
|
[25] | Twyman RM, Stoger E, Schillberg S, Christou P, Fischer R (2003) Molecular farming in plants: host systems and expression technology. Trends Biotechnol 21: 570-578. doi:10.1016/j.tibtech.2003.10.002. PubMed: 14624867.
|
[26] | Fischer R, Stoger E, Schillberg S, Christou P, Twyman RM (2004) Plant-based production of biopharmaceuticals. Curr Opin Plant Biol 7: 152-158. doi:10.1016/j.pbi.2004.01.007. PubMed: 15003215.
|
[27] | Teli NP, Timko MP (2004) Recent developments in the use of transgenic plants for the production of human therapeutics and biopharmaceuticals. Plant Cell, Tissue Organ Cult 79: 125-145. doi:10.1007/s11240-004-0653-0.
|
[28] | Biemelt S, Sonnewald U (2004) Molecular farming in plants. London: Nature Publishing Group.
|
[29] | López-García B, San Segundo B, Coca M (2012) Antimicrobial peptides as a promising alternative for plant disease protection. In: K. RajasekaranJW CaryJM JaynesE. Montesinos. Small wonders: peptides for disease control. Washington DC: American Chemical Society. pp. 263-294.
|
[30] | Streatfield SJ (2007) Approaches to achieve high-level heterologous protein production in plants. Plant Biotechnol J 5: 2-15. doi:10.1111/j.1467-7652.2006.00216.x. PubMed: 17207252.
|
[31] | Conrad U, Fiedler U (1998) Compartment-specific accumulation of recombinant immunoglobulins in plant cells: An essential tool for antibody production and immunomodulation of physiological functions and pathogen activity. Plant Mol Biol 38: 101-109. doi:10.1023/A:1006029617949. PubMed: 9738962.
|
[32] | Takagi H, Hiroi T, Yang T, Tada Y, Yuki Y et al. (2005) A rice-based edible vaccine expressing multiple T cell epitopes induces oral tolerance for inhibion of Th2-mediated IgE responses. Proc Natl Acad Sci U S A 102: 17525-17530. doi:10.1073/pnas.0503428102. PubMed: 16278301.
|
[33] | Schillberg S, Zimmermann S, Voss A, Fischer R (1999) Apoplastic and cytosolic expression of full-size antibodies and antibody fragments in Nicotiana tabacum. Transgenic Res 8: 255-263. doi:10.1023/A:1008937011213. PubMed: 10621973.
|
[34] | Schillberg S, Fischer R, Emans N (2003) Molecular farming of recombinant antibodies in plants. Cell Mol Life Sci 60: 433-445. doi:10.1007/s000180300037. PubMed: 12737305.
|
[35] | Fischer R, Emans N (2000) Molecular farming of pharmaceutical proteins. Transgenic Res 9: 279-299. doi:10.1023/A:1008975123362. PubMed: 11131007.
|
[36] | Boman HG, Hultmark D (1987) Cell-free immunity in insects. Annu Rev Microbiol 41: 103-126. doi:10.1146/annurev.mi.41.100187.000535. PubMed: 3318666.
|
[37] | Pagny S, Lerouge P, Faye L, Gomord V (1999) Signals and mechanisms for protein retention in the endoplasmic reticulum. J Exp Bot 50: 157-164. doi:10.1093/jexbot/50.331.157.
|
[38] | Carrington JC, Dougherty WG (1988) A viral cleavage site cassette: Identification of amino acid sequences required for tobacco etch virus polyprotein processing. Proc Natl Acad Sci U S A 85: 3391-3395. doi:10.1073/pnas.85.10.3391. PubMed: 3285343.
|
[39] | Baird GS, Zacharias DA, Tsien RY (2000) Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci U S A 97: 11984-11989. doi:10.1073/pnas.97.22.11984. PubMed: 11050229.
|
[40] | Rasche S, Martin A, Holzem A, Fischer R, Schinkell H, Schillberg S (2011) One-step protein purification: use of a novel epitope tag for highly efficient detection and purification of recombinant proteins. Open Biotechnology Journal 5: 1-6. doi:10.2174/1874070701105010001.
|
[41] | Nadal A, Montero M, Company N, Badosa E, Messeguer J et al. (2012) Constitutive expression of transgenes encoding derivatives of the syntetic antimicrobial peptide BP100: impact on rice host plant fitness. BMC Plant Biol 12: 159. doi:10.1186/1471-2229-12-159. PubMed: 22947243.
|
[42] | Pasupuleti M, Schmidtchen A, Malmsten M (2012) Antimicrobial peptides: key components on the innate immune system. Crit Rev Biotechnol 32: 143-171. doi:10.3109/07388551.2011.594423. PubMed: 22074402.
|
[43] | Güell I, Cabrefiga J, Badosa E, Ferre R, Talleda M et al. (2011) Improvement of the efficacy of linear undecapeptides against plant-pathogenic bacteria by incorporation of D-amino acids. Appl Environ Microbiol 77: 2667-2675. doi:10.1128/AEM.02759-10. PubMed: 21335383.
|
[44] | Giangaspero A, Sandri L, Tossi A (2001) Amphipathic alpha-helical antimicrobial peptides: a systematic study of the effects of structural and physical properties on biological activity. Eur J Biochem 268: 5589-5600. doi:10.1046/j.1432-1033.2001.02494.x. PubMed: 11683882.
|
[45] | Huang HW (2000) Action of antimicrobial peptides: two-state model. Biochemistry 39: 8347-8352. doi:10.1021/bi000946l. PubMed: 10913240.
|
[46] | Cavallarin L, Andreu D, San Segundo B (1998) Cecropin A-derived peptides are potent inhibitors of fungal plant pathogens. Mol Plant Microbe Interact 11: 218-227. doi:10.1094/MPMI.1998.11.3.218. PubMed: 9487696.
|
[47] | Ando S, Mitsuyasu K, Soeda Y, Hidaka M, Ito Y et al. (2010) Structure-activity relationship of indolicidin, a Trp-rich antibacterial peptide. J Pept Sci 16: 171-177. PubMed: 20196123.
|
[48] | Gopal R, Kim YJ, Seo CH, Hahm K-S, Park Y (2011) Reversed sequence enhances antimicrobial activity of a synthetic peptide. J Pept Sci 17: 329-334. doi:10.1002/psc.1369. PubMed: 21462284.
|
[49] | Juvvadi P, Vunnam S, Merrifield RB (1996) Synthetic melittin, its enantio, retro and retroenantio isomers, and selected chimeric analogs: their antibacterial, hemolytic, and lipid bilayer action. J Am Chem Soc 118: 8989-8997. doi:10.1021/ja9542911.
|
[50] | Juvvadi P, Vunnam S, Yoo B, Merrifield RB (1999) Structure-activity studies of normal and retro pig cecropin-melittin hybrids. J Pept Res 53: 244-251. doi:10.1034/j.1399-3011.1999.00020.x. PubMed: 10231712.
|
[51] | Díaz M, Arenas G, Marshall S (2008) Design and expression of a retro doublet of cecropin with enhanced activity. Electron J Biotechn 11: Available: July 18, 2012. Available: .
|
[52] | Tossi A, Sandri L, Giangaspero A (2000) Amphipathic, α-helical antimicrobial peptides. Biopolymers 55: 4-30. doi:10.1002/1097-0282(2000)55:1. PubMed: 10931439.
|
[53] | Sato H, Feix JB (2006) Peptide-membrane interactions and mechanisms of membrane destruction by amphipathic α-helical antimicrobial peptides. Biochim Biophys Acta 1758: 1245-1256. doi:10.1016/j.bbamem.2006.02.021. PubMed: 16697975.
|
[54] | Miyashita M, Oda M, Ono Y, Komoda E, Miyagawa H (2011) Discovery of a small peptide from combinatorial libraries that can activate the plant immune system by a jasmonic acid signaling pathway. Chembiochem 12: 1323-1329. doi:10.1002/cbic.201000694. PubMed: 21567702.
|
[55] | Makovitzki A, Viterbo A, Brotman Y, Chet I, Shai Y (2007) Inhibition of fungal and bacterial plant pathogens in vitro and in planta with ultrashort cationic lipopeptides. Appl Environ Microbiol 73: 6629-6636. doi:10.1128/AEM.01334-07. PubMed: 17720828.
|
[56] | Company N, Nadal A, La Paz JL, Martínez S, Rasche S et al. (2013) The production of recombinant cationic α-helical antimicrobial peptides in plant cells induces the formation of protein bodies derived from the endoplasmic reticulum. Plant Biotechnol J 11: 1-12. doi:10.1111/pbi.12036. PubMed: 24102775.
|