全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2013 

Effects of Inhibition of Serine Palmitoyltransferase (SPT) and Sphingosine Kinase 1 (SphK1) on Palmitate Induced Insulin Resistance in L6 Myotubes

DOI: 10.1371/journal.pone.0085547

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background The objective of this study was to examine the effects of short (2 h) and prolonged (18 h) inhibition of serine palmitoyltransferase (SPT) and sphingosine kinase 1 (SphK1) on palmitate (PA) induced insulin resistance in L6 myotubes. Methods L6 myotubes were treated simultaneously with either PA and myriocin (SPT inhibitor) or PA and Ski II (SphK1inhibitor) for different time periods (2 h and 18 h). Insulin stimulated glucose uptake was measured using radioactive isotope. Expression of insulin signaling proteins was determined using Western blot analyses. Intracellular sphingolipids content [sphinganine (SFA), ceramide (CER), sphingosine (SFO), sphingosine-1-phosphate (S1P)] were estimated by HPLC. Results Our results revealed that both short and prolonged time of inhibition of SPT by myriocin was sufficient to prevent ceramide accumulation and simultaneously reverse palmitate induced inhibition of insulin-stimulated glucose transport. In contrast, prolonged inhibition of SphK1 intensified the effect of PA on insulin-stimulated glucose uptake and attenuated further the activity of insulin signaling proteins (pGSK3β/GSK3β ratio) in L6 myotubes. These effects were related to the accumulation of sphingosine in palmitate treated myotubes. Conclusion Myriocin is more effective in restoration of palmitate induced insulin resistance in L6 myocytes, despite of the time of SPT inhibition, comparing to SKII (a specific SphK1 inhibitor). Observed changes in insulin signaling proteins were related to the content of specific sphingolipids, namely to the reduction of ceramide. Interestingly, inactivation of SphK1 augmented the effect of PA induced insulin resistance in L6 myotubes, which was associated with further inhibition of insulin stimulated PKB and GSK3β phosphorylation, glucose uptake and the accumulation of sphingosine.

References

[1]  Boslem E, Meikle PJ, Biden TJ (2012) Roles of ceramide and sphingolipids in pancreatic β-cell function and dysfunction. Islets 4: 177-187. doi:10.4161/isl.20102. PubMed: 22847494.
[2]  Lipina C, Hundal HS (2011) Sphingolipids: agents provocateurs in the pathogenesis of insulin resistance. Diabetologia 54: 1596-1607. doi:10.1007/s00125-011-2127-3. PubMed: 21468641.
[3]  Alewijnse AE, Peters SL (2008) Sphingolipid signalling in the cardiovascular system: good, bad or both? Eur J Pharmacol 585: 292-302. doi:10.1016/j.ejphar.2008.02.089. PubMed: 18420192.
[4]  Hla T (2003) Signalling and biological actions of sphingosine 1-phosphate. Pharmacolpharmacological Research 47: 401-407. doi:10.1016/S1043-6618(03)00046-X.
[5]  Merrill AH (2002) De novo sphingolipid biosynthesis: a necessary, but dangerous, pathway. J Biol Chem 29: 25843-25846. PubMed: 12011104.
[6]  Hannun YA, Obeid LM (2002) The ceramide – centric universe of lipid-mediated cell regulation: stress encounters of the lipid kind. J Biol Chem 29: 25847-25850.
[7]  Maceyka M, Payne SG, Milstien S, Spiegel S (2002) Sphingosine kinase, sphingosine-1-phosphate, and apoptosis. Biochim Biophys Acta 1585: 193-201. doi:10.1016/S1388-1981(02)00341-4. PubMed: 12531554.
[8]  Podbielska M, Krotkiewski H, Hogan EL (2012) Signaling and regulatory functions of bioactive sphingolipids as therapeutic targets in multiple sclerosis. Neurochem Res 37: 1154-1169. doi:10.1007/s11064-012-0728-y. PubMed: 22451227.
[9]  Chabowski A, Zendzian-Piotrowska M, Mik?osz A, ?ukaszuk B, Kurek K et al. (2013) Fiber specific changes in sphingolipid metabolism in skeletal muscles of hyperthyroid rats. Lipids 48: 697-704. doi:10.1007/s11745-013-3769-3. PubMed: 23467817.
[10]  Baranowski M, Charmas M, D?ugo??cka B, Górski J (2011) Exercise increases plasma levels of sphingoid base-1 phosphates in humans. Acta Physiol (Oxf) 203: 373-380. doi:10.1111/j.1748-1716.2011.02322.x. PubMed: 21535416.
[11]  Park JW, Park WJ, Kuperman Y, Boura-Halfon S, Pewzner-Jung Y et al. (2013) Ablation of very long acyl chain sphingolipids causes hepatic insulin resistance in mice due to altered detergent-resistant membranes. Hepatology 57: 525-532. doi:10.1002/hep.26015. PubMed: 22911490.
[12]  Bosma M, Kersten S, Hesselink MK, Schrauwen P (2012) Re-evaluating lipotoxic triggers in skeletal muscle: relating intramyocellular lipid metabolism to insulin sensitivity. Prog Lipid Res 51: 36-49. doi:10.1016/j.plipres.2011.11.003. PubMed: 22120643.
[13]  Schmitz-Peiffer C, Craig DL, Biden TJ (1999) Ceramide generation is sufficient to account for the inhibition of the insulin-stimulated PKB pathway in C2C12 skeletal muscle cells pretreated with palmitate. J Biol Chem 274: 24202-24210. doi:10.1074/jbc.274.34.24202. PubMed: 10446195.
[14]  Hajduch E, Balendran A, Batty IH, Litherland GJ, Blair AS et al. (2001) Ceramide impairs the insulin-dependent membrane recruitment of protein kinase B leading to a loss in downstream signalling in L6 skeletal muscle cells. Diabetologia 44: 173-183. doi:10.1007/s001250051596. PubMed: 11270673.
[15]  Watson ML, Coghlan M, Hundal HS (2009) Modulating serine palmitoyl transferase (SPT) expression and activity unveils a crucial role in lipid-induced insulin resistance in rat skeletal muscle cells. Biochem J 417: 791-801. doi:10.1042/BJ20081149. PubMed: 18922131.
[16]  Pickersgill L, Litherland GJ, Greenberg AS, Walker M, Yeaman SJ (2007) Key role for ceramides in mediating insulin resistance in human muscle cells. J Biol Chem 282: 12583-12589. doi:10.1074/jbc.M611157200. PubMed: 17337731.
[17]  Adams JM 2nd, Pratipanawatr T, Berria R, Wang E, DeFronzo RA et al. (2004) Ceramide content is increased in skeletal muscle from obese insulin resistant humans. Diabetes 53: 25-31. doi:10.2337/diabetes.53.1.25. PubMed: 14693694.
[18]  Stratford S, Hoehn KL, Liu F, Summers SA (2004) Regulation of insulin action by ceramide: dual mechanisms linking ceramide accumulation to the inhibition of Akt/protein kinase B. J Biol Chem 279: 36608-36615. doi:10.1074/jbc.M406499200. PubMed: 15220355.
[19]  Straczkowski M, Kowalska I, Baranowski M, Nikolajuk A, Otziomek E et al. (2007) Increased skeletal muscle ceramide level in men at risk of developing type 2 diabetes. Diabetologia 50: 2366-2373. doi:10.1007/s00125-007-0781-2. PubMed: 17724577.
[20]  Bikman BT, Summers SA (2011) Ceramides as modulators of cellular and whole-body metabolism. J Clin Invest 121: 4222-4230. doi:10.1172/JCI57144. PubMed: 22045572.
[21]  Chavez JA, Knotts TA, Wang LP, Li G, Dobrowsky RT et al. (2003) A role for ceramide, but not diacylglycerol, in the antagonism of insulin signal transduction by saturated fatty acids. J Biol Chem 278: 10297-10303. doi:10.1074/jbc.M212307200. PubMed: 12525490.
[22]  Powell DJ, Turban S, Gray A, Hajduch E, Hundal HS (2004) Intracellular ceramide synthesis and protein kinase Cz activation play an essential role in palmitate-induced insulin resistance in rat L6 skeletal muscle cells. Biochem J 382: 619-629. doi:10.1042/BJ20040139. PubMed: 15193147.
[23]  Holland WL, Brozinick JT, Wang LP, Hawkins ED, Sargent KM et al. (2007) Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab 5: 167-179. doi:10.1016/j.cmet.2007.01.002. PubMed: 17339025.
[24]  Maceyka M, Sankala H, Hait NC, Le Stunff H, Liu H et al. (2005) SphK1 and SphK2, sphingosine kinase isoenzymes with opposing functions in sphingolipid metabolism. J Biol Chem 280: 37118-37129. doi:10.1074/jbc.M502207200. PubMed: 16118219.
[25]  Ma MM, Chen JL, Wang GG, Wang H, Lu Y et al. (2007) Sphingosine kinase 1 participates in insulin signalling and regulates glucose metabolism and homeostasis in KK/Ay diabetic mice. Diabetologia 50: 891-900. doi:10.1007/s00125-006-0589-5. PubMed: 17265031.
[26]  Bruce CR, Risis S, Babb JR, Yang C, Kowalski GM et al. (2012) Overexpression of sphingosine kinase 1 prevents ceramide accumulation and ameliorates muscle insulin resistance in high-fat diet-fed mice. Diabetes 61: 3148-3155. doi:10.2337/db12-0029. PubMed: 22961081.
[27]  Seyoum B, Fite A, Abou-Samra AB (2011) Effects of 3T3 adipocytes on interleukin-6 expression and insulin signaling in L6 skeletal muscle cells. Biochem Biophys Res Commun 410: 13-18. doi:10.1016/j.bbrc.2011.05.073. PubMed: 21640704.
[28]  Zhang C, He H, Zhang H, Yu D, Zhao W et al. (2013) The blockage of Ras/ERK pathway augments the sensitivity of SphK1 inhibitor SKI II in human hepatoma HepG2 cells. Biochem Biophys Res Commun 434: 35-41. doi:10.1016/j.bbrc.2013.03.070. PubMed: 23545258.
[29]  Miklosz A, Chabowski A, Zendzian-Piotrowska M, Gorski J (2012) Effects of hyperthyroidism on lipid content and composition in oxidative and glycolytic muscles in rats. J Physiol Pharmacol 63: 403-410. PubMed: 23070090.
[30]  Min JK, Yoo HS, Lee EY, Lee WJ, Lee YM (2002) Simultaneous quantitative analysis of sphingoid base 1-phosphates in biological samples by o-phthalaldehyde precolumn derivatization after dephosphorylation with alkaline phosphatase. Anal Biochem 303: 167-175. doi:10.1006/abio.2002.5579. PubMed: 11950216.
[31]  Bose R, Chen P, Loconti A, Grüllich C, Abrams JM et al. (1998) Ceramide generation by the Reaper protein is not blocked by the caspase inhibitor, p35. J Biol Chem 273: 28852-28859. doi:10.1074/jbc.273.44.28852. PubMed: 9786886.
[32]  Dekker MJ, Baker C, Naples M, Samsoondar J, Zhang R et al. (2013) Inhibition of sphingolipid synthesis improves dyslipidemia in the diet-induced hamster model of insulin resistance: Evidence for the role of sphingosine and sphinganine in hepatic VLDL-apoB100 overproduction. Atherosclerosis 228: 98-109. doi:10.1016/j.atherosclerosis.2013.01.041. PubMed: 23466071.
[33]  Kolter T (2011) A view on sphingolipids and disease. Chem Phys Lipids 164: 590-606. doi:10.1016/j.chemphyslip.2011.04.013. PubMed: 21570958.
[34]  Chavez JA, Summers SA (2010) Lipid oversupply, selective insulin resistance, and lipotoxicity: molecular mechanisms. Biochim Biophys Acta 1801: 252-265. doi:10.1016/j.bbalip.2009.09.015. PubMed: 19796706.
[35]  Aerts JM, Boot RG, Eijk M, Groener J, Bijl N et al. (2011) Glycosphingolipids and insulin resistance. Adv Exp Med Biol 721: 99-119. doi:10.1007/978-1-4614-0650-1_7. PubMed: 21910085.
[36]  Dubé JJ, Amati F, Toledo FG, Stefanovic-Racic M, Rossi A et al. (2011) Effects of weight loss and exercise on insulin resistance, and intramyocellular triacylglycerol, diacylglycerol and ceramide. Diabetologia 54: 1147-1156. doi:10.1007/s00125-011-2065-0. PubMed: 21327867.
[37]  Holland WL, Summers SA (2008) Sphingolipids, insulin resistance, and metabolic disease: new insights from in vivo manipulation of sphingolipid metabolism. Endocr Rev 29: 381-402. doi:10.1210/er.2007-0025. PubMed: 18451260.
[38]  Bruce CR, Risis S, Babb JR, Yang C, Lee-Young RS et al. (2013) The sphingosine-1-phosphate analog FTY720 reduces muscle ceramide content and improves glucose tolerance in high fat-fed male mice. Endocrinology 154: 65-76. doi:10.1210/en.2012-1847. PubMed: 23183172.
[39]  Lam YY, Hatzinikolas G, Weir JM, Janovská A, McAinch AJ et al. (2011) Insulin-stimulated glucose uptake and pathways regulating energy metabolism in skeletal muscle cells: the effects of subcutaneous and visceral fat, and long-chain saturated, n-3 and n-6 polyunsaturated fatty acids. Biochim Biophys Acta 181: 468-475. PubMed: 21570480.
[40]  Wang L, Xing XP, Holmes A, Wadham C, Gamble JR et al. (2005) Activation of the sphingosine kinase-signaling pathway by high glucose mediates the proinflammatory phenotype of endothelial cells. Circ Res 9: 891-899. PubMed: 16179586.
[41]  Takabe K, Paugh SW, Milstien S, Spiegel S (2008) "Inside-out" signaling of sphingosine-1-phosphate: therapeutic targets. Pharmacol Rev 2: 181-195.
[42]  Bruni P, Donati C (2008) Pleiotropic effects of sphingolipids in skeletal muscle. Cell Mol Life Sci 65: 3725-3736. doi:10.1007/s00018-008-8236-6. PubMed: 18668202.
[43]  Coen PM, Goodpaster BH (2012) Role of intramyocelluar lipids in human health. Trends Endocrinol Metab 8: 391-398. PubMed: 22721584.
[44]  Hu W, Bielawski J, Samad F, Merrill AH Jr, Cowart LA (2009) Palmitate increases sphingosine-1-phosphate in C2C12 myotubes via upregulation of sphingosine kinase message and activity. J Lipid Res 9: 1852-1862. PubMed: 19369694.
[45]  Ussher JR, Koves TR, Cadete VJJ, Zhang L, Jaswal JS et al. (2010) Inhibition of de novo ceramide synthesis reverses diet-induced insulin resistance and enhances whole-body oxygen consumption. Diabetes 59: 2453-2464. doi:10.2337/db09-1293. PubMed: 20522596.
[46]  Frangioudakis G, Garrard J, Raddatz K, Nadler JL, Mitchell TW et al. (2010) Saturated- and n-6 polyunsaturated-fat diets each induce ceramide accumulation in mouse skeletal muscle: reversal and improvement of glucose tolerance by lipid metabolism inhibitors. Endocrinology 9: 4187-4196. PubMed: 20660065.
[47]  Kono M, Allende ML, Proia RL (2008) Sphingosine-1-phosphate regulation of mammalian development. Biochim Biophys Acta 1781: 435-441. doi:10.1016/j.bbalip.2008.07.001. PubMed: 18675379.
[48]  Yang G, Badeanlou L, Bielawski J, Roberts AJ, Hannun YA et al. (2009) Central role of ceramide biosynthesis in body weight regulation, energy metabolism, and the metabolic syndrome. Am J Physiol Endocrinol Metab 297: E211-E224. doi:10.1152/ajpendo.91014.2008. PubMed: 19435851.
[49]  Kotelevets N, Fabbro D, Huwiler A, Zangemeister-Wittke U (2012) Targeting sphingosine kinase 1 in carcinoma cells decreases proliferation and survival by compromising PKC activity and cytokinesis. PLOS ONE 6: e39209-e39222.
[50]  Watt MJ, Hoy AJ (2012) Lipid metabolism in skeletal muscle: generation of adaptive and maladaptive intracellular signals for cellular function. Am J Physiol Endocrinol Metab 302: E1315-E1328. doi:10.1152/ajpendo.00561.2011. PubMed: 22185843.
[51]  Rapizzi E, Taddei ML, Fiaschi T, Donati C, Bruni P et al. (2009) Sphingosine 1-phosphate increases glucose uptake through trans-activation of insulin receptor. Cell Mol Life Sci 66: 3207-3218. doi:10.1007/s00018-009-0106-3. PubMed: 19662499.
[52]  Maceyka M, Harikumar KB, Milstien S, Spiegel S (2012) Sphingosine-1-phosphate signaling and its role in disease. Trends Cell Biol 22: 50-60. doi:10.1016/j.tcb.2011.09.003. PubMed: 22001186.
[53]  Johnson KR, Becker KP, Facchinetti MM, Hannun YA, Obeid LM (2002) PKC-dependent activation of sphingosine kinase 1 and translocation to the plasma membrane. Extracellular release of sphingosine-1-phosphate induced by phorbol 12-myristate 13-acetate (PMA). J Biol Chem 277: 35257-35262. doi:10.1074/jbc.M203033200. PubMed: 12124383.
[54]  Liu H, Toman RE, Goparaju SK, Maceyka M, Nava VE et al. (2003) Sphingosine kinase type 2 is a putative BH3-only protein that induces apoptosis. J Biol Chem 278: 40330-40336. doi:10.1074/jbc.M304455200. PubMed: 12835323.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133