Display technologies are procedures used for isolating target-recognizing peptides without using immunized animals. In this study, we describe a new display method, named Hishot display, that uses Escherichia coli and an expression plasmid to isolate target-recognizing peptides. This display method is based on the formation, in bacteria, of complexes between a polyhistidine (His)-tagged peptide including random sequences and the peptide-encoding mRNA including an RNA aptamer against the His-tag. When this system was tested using a sequence encoding His-tagged green fluorescent protein that included an RNA aptamer against the His-tag, the collection of mRNA encoding the protein was dependent on the RNA aptamer. Using this display method and a synthetic library of surrogate single-chain variable fragments consisting of VpreB and Ig heavy-chain variable domains, it was possible to isolate clones that could specifically recognize a particular target (intelectin-1 or tumor necrosis factor-α). These clones were obtained as soluble proteins produced by E. coli, and the purified peptide clones recognizing intelectin-1 could be used as detectors for sandwich enzyme-linked immunosorbent assays. The Hishot display will be a useful method to add to the repertoire of display technologies.
References
[1]
K?hler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256: 495–497.
Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228: 1315–1317.
[4]
Sidhu SS, Koide S (2007) Phage display for engineering and analyzing protein interaction interfaces. Curr Opin Struct Biol 17: 481–487.
[5]
Harvey BR, Georgiou G, Hayhurst A, Jeong KJ, Iverson BL, et al. (2004) Anchored periplasmic expression, a versatile technology for the isolation of high-affinity antibodies from Escherichia coli-expressed libraries. Proc Natl Acad Sci U S A 101: 9193–9198.
[6]
Mazor Y, Van Blarcom T, Mabry R, Iverson BL, Georgiou G (2007) Isolation of engineered, full-length antibodies from libraries expressed in Escherichia coli. Nat Biotechnol 25: 563–565.
[7]
Boder ET, Wittrup KD (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15: 553–557.
[8]
Cull MG, Miller JF, Schatz PJ (1992) Screening for receptor ligands using large libraries of peptides linked to the C terminus of the lac repressor. Proc Natl Acad Sci U S A 89: 1865–1869.
[9]
Gates CM, Stemmer WPC, Kaptein R, Schatz PJ (1996) Affinity selective isolation of ligands from peptide libraries through display on a lac repressor “headpiece dimer”. J Mol Biol 255: 373–386.
[10]
Speight RE, Hart DJ, Sutherland JD, Blackburn JM (2001) A new plasmid display technology for the in vitro selection of functional phenotype-genotype linked proteins. Chem Biol 8: 951–965.
[11]
Mattheakis LC, Bhatt RR, Dower WJ (1994) An in vitro polysome display system for identifying ligands from very large peptide libraries. Proc Natl Acad Sci U S A 91: 9022–9026.
[12]
Hanes J, Schaffitzel C, Knappik A, Plückthun A (2000) Picomolar affinity antibodies from a fully synthetic naive library selected and evolved by ribosome display. Nat Biotechnol 18: 1287–1292.
[13]
Wilson DS, Keefe AD, Szostak JW (2001) The use of mRNA display to select high-affinity protein-binding peptides. Proc Natl Acad Sci U S A 98: 3750–3755.
[14]
Tsuji S, Tanaka T, Hirabayashi N, Kato S, Akitomi J, et al. (2009) RNA aptamer binding to polyhistidine-tag. Biochem Biophys Res Commun 386: 227–231.
[15]
Qing G, Ma LC, Khorchid A, Swapna GV, Mal TK, et al. (2004) Cold-shock induced high-yield protein production in Escherichia coli. Nat Biotechnol 22: 877–882.
[16]
Mach H, Middaugh CR, Lewis RV (1992) Statistical determination of the average values of the extinction coefficients of tryptophan and tyrosine in native proteins. Anal Biochem 200: 74–80.
[17]
Muruganandam A, Tanha J, Narang S, Stanimirovic D (2002) Selection of phage-displayed llama single-domain antibodies that transmigrate across human blood-brain barrier endothelium. FASEB J 16: 240–242.
[18]
Bankovich AJ, Raunser S, Juo ZS, Walz T, Davis MM, et al. (2007) Structural insight into pre-B cell receptor function. Science 316: 291–294.
[19]
Xu L, Yee H, Chan C, Kashyap AK, Horowitz L, et al. (2008) Combinatorial surrobody libraries. Proc Natl Acad Sci U S A 105: 10756–10761.
[20]
Hagihara Y, Matsuda T, Yumoto N (2005) Cellular quality control screening to identify amino acid pairs for substituting the disulfide bonds in immunoglobulin fold domains. J Biol Chem 280: 24752–24758.
[21]
Roth R, Mamula MJ (1997) Trafficking of adoptively transferred B lymphocytes in B-lymphocyte-deficient mice. J Exp Biol 200: 2057–2062.
[22]
Naimuddin M, Kobayashi S, Tsutsui C, Machida M, Nemoto N, et al. (2011) Directed evolution of a three-finger neurotoxin by using cDNA display yields antagonists as well as agonists of interleukin-6 receptor signaling. Mol Brain 4: 2.