全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

A Low Complexity Rapid Molecular Method for Detection of Clostridium difficile in Stool

DOI: 10.1371/journal.pone.0083808

Full-Text   Cite this paper   Add to My Lib

Abstract:

Here we describe a method for the detection of Clostridium difficile from stool using a novel low-complexity and rapid extraction process called Heat Elution (HE). The HE method is two-step and takes just 10 minutes, no specialist instruments are required and there is minimal hands-on time. A test method using HE was developed in conjunction with Loop-mediated Isothermal Amplification (LAMP) combined with the real-time bioluminescent reporter system known as BART targeting the toxin B gene (tcdB). The HE-LAMP-BART method was evaluated in a pilot study on clinical fecal samples (tcdB+, n = 111; tcdB?, n = 107). The HE-LAMP-BART method showed 95.5% sensitivity and 100% specificity against a gold standard reference method using cytotoxigenic culture and also a silica-based robotic extraction followed by tcdB PCR to control for storage. From sample to result, the HE-LAMP-BART method typically took 50 minutes, whereas the PCR method took >2.5 hours. In a further study (tcdB+, n = 47; tcdB?, n = 28) HE-LAMP-BART was compared to an alternative commercially available LAMP-based method, Illumigene (Meridian Bioscience, OH), and yielded 87.2% sensitivity and 100% specificity for the HE-LAMP-BART method compared to 76.6% and 100%, respectively, for Illumigene against the reference method. A subset of 27 samples (tcdB+, n = 25; tcdB?, n = 2) were further compared between HE-LAMP-BART, Illumigene, GeneXpert (Cepheid, Sunnyvale, CA) and RIDA?QUICK C. difficile Toxin A/B lateral flow rapid test (R-Biopharm, Darmstadt, Germany) resulting in sensitivities of HE-LAMP-BART 92%, Illumigene 72% GeneXpert 96% and RIDAQuick 76% against the reference method. The HE-LAMP-BART method offers the advantages of molecular based approaches without the cost and complexity usually associated with molecular tests. Further, the rapid time-to-result and simple protocol means the method can be applied away from the centralized laboratory settings.

References

[1]  Stabler RA, He M, Dawson L, Martin M, Valiente E, et al. (2009) Comparative genome and phenotypic analysis of Clostridium difficile 027 strains provides insight into the evolution of a hypervirulent bacterium. BMC Genome Biol 10: R102.
[2]  Kuehne SA, Cartman ST, Heap JT, Kelly ML, Cockayne A, et al. (2010) The role of toxin A and toxin B in Clostridium difficile infection. Nature 467: 711–713.
[3]  Voth DE, Ballard JD (2005) Clostridium difficile toxins: Mechanism of action and role in disease. Clin Microbiol Rev 18: 247–263.
[4]  Bartlett JG (2006) Narrative review: The new epidemic of Clostridium difficile-associated enteric disease. Ann Intern Med 145: 758–764.
[5]  Rupnik M, Wilcox MH, Gerding DN (2009) Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nature Rev Microbiol 7: 526–536.
[6]  Jones AM, Kuijper EJ, Wilcox MH (2013) Clostridium difficile: a European perspective. J Infect 66: 115–28.
[7]  Stanley JD, Bartlett JG, Dart BW4th, Ashcraft JH (2013) Clostridium difficile infection. Curr Probl Surg 50: 302–37.
[8]  Health Protection Agency. Voluntary surveillance of Clostridium difficile in England, Wales and Northern Ireland. London; 2013. Available: http://www.hpa.org.uk/webc/HPAwebFile/HP?Aweb_C/1317138039648 Accessed 22 November 2013.
[9]  Health Protection Agency. Clostridium difficile Ribotyping Network (CDRN) for England and Northern Ireland 2010/11 Annual Report (2012). Available: http://www.hpa.org.uk/webc/HPAwebFile/HP?Aweb_C/1317133396963 Accessed 22 November 2013.
[10]  Burns DA, Heeg D, Cartman ST, Minton NP (2011) Reconsidering the sporulation characteristics of hypervirulent Clostridium difficile BI/NAP1/027. PLoS ONE 6: e24894.
[11]  Brouwer MSM, Warburton PJ, Roberts AP, Mullany P, Allan E (2011) Genetic organisation, mobility and predicted functions of genes on integrated, mobile genetic elements in sequenced strains of Clostridium difficile. PLoS ONE 6: e23014.
[12]  Knetsch CW, Bakker D, de Boer RF, Sanders I, Hofs S, et al. (2011) Comparison of real-time PCR techniques to cytotoxigenic culture methods for diagnosing Clostridium difficile infection. J Clin Microbiol 49: 227–231.
[13]  Ananthakrishnan AN (2011) Clostridium difficile infection: epidemiology, risk factors and management. Nat Rev Gastroenterol Hepatol 8: 17–26.
[14]  Bartlett JG (2010) Detection of Clostridium difficile infection. Infect Control Hosp Epidemiol 31 Suppl 1S35–S37.
[15]  Tenover FC, Novak-Weekley S, Woods CW, Peterson LR, Davis T, et al. (2010) Impact of strain type on detection of toxigenic Clostridium difficile: comparison of molecular diagnostic and enzyme immunoassay approaches. J Clin Microbiol 48: 3719–3724.
[16]  Kvach EJ, Ferguson D, Riska PF, Landry ML (2010) Comparison of BD GeneOhm Cdiff real-time PCR assay with a two-step algorithm and a toxin A/B enzyme-linked immunosorbent assay for diagnosis of toxigenic Clostridium difficile infection. J Clin Microbiol 48: 109–114.
[17]  Lalande V, Barrault L, Wadel S, Eckert C, Petit JC, et al. (2011) Evaluation of a loop-mediated isothermal amplification assay for diagnosis of Clostridium difficile infections. J Clin Microbiol 49: 2714–2716.
[18]  Novak-Weekley SM, Marlowe EM, Miller JM, Cumpio J, Nomura JH, et al. (2010) Clostridium difficile testing in the clinical laboratory by use of multiple testing algorithms. J Clin Microbiol 48: 889–893.
[19]  Quinn CD, Sefers SE, Babiker W, He Y, Alcabasa R, et al. (2010) C. Diff Quik Chek complete enzyme immunoassay provides a reliable first-line method for detection of Clostridium difficile in stool specimens. J Clin Microbiol 48: 603–605.
[20]  Sloan LM, Duresko BJ, Gustafson DR, Rosenblatt JE (2008) Comparison of real-time PCR for detection of the tcdC gene with four toxin immunoassays and culture in diagnosis of Clostridium difficile infection. J Clin Microbiol 46: 1996–2001.
[21]  Dineen SS, Villapakkam AC, Nordman JT, Sonenshein AL (2007) Repression of Clostridium difficile toxin gene expression by CodY. Mol. Microbiol 66: 206–19.
[22]  Bartlett JG (2010) Clostridium difficile: progress and challenges. Ann N Y Acad Sci 1213: 62–69.
[23]  Planche TD, Davies KA, Coen PG, Finney JM, Monahan IM, et al. (2013) Differences in outcome according to Clostridium difficile testing method: a prospective multicentre diagnostic validation study of C difficile infection. Lancet Infect Dis 13: 936–45.
[24]  Antunes A, Dupuy B (2010) Molecular methods to study transcriptional regulation of Clostridium difficile toxin genes. Methods Mol Biol 646: 93–115.
[25]  Rupnik M (2010) Clostridium difficile toxinotyping. Methods Mol Biol 646: 67–76.
[26]  Spigaglia P, Mastrantonio P (2002) Molecular analysis of the pathogenicity locus and polymorphism in the putative negative regulator of toxin production (TcdC) among Clostridium difficile clinical isolates. J Clin Microbiol 40: 3470–3475.
[27]  Lawson AJ, Linton D, Stanley J, Owen RJ (1997) Polymerase chain reaction detection and speciation of Campylobacter upsaliensis and C. helveticus in human faeces and comparison with culture techniques. J Appl Microbiol 83: 375–80.
[28]  Tsai YL, Olson BH (1992) Rapid method for separation of bacterial DNA from humic substances in sediments for polymerase chain reaction. Appl Environ Microbiol 58: 2292–5.
[29]  Al-Soud WA, R?dstr?m P (1998) Capacity of Nine Thermostable DNA Polymerases To Mediate DNA Amplification in the Presence of PCR-Inhibiting Samples. Appl Environ Microbiol 64: 3748–3753.
[30]  Monteiro L, Bonnemaison D, Vekris A, Petry KG, Bonnet J, et al. (1997) Complex polysaccharides as PCR inhibitors in feces: Helicobacter pylori model. J Clin Microbiol 35: 995–998.
[31]  Oikarinen S, Tauriainen S, Viskari H, Simell O, Knip M, et al. (2009) PCR inhibition in stool samples in relation to age of infants. J Clin Virol 44: 211–214.
[32]  Akane A, Matsubara K, Nakamura H, Takahashi S, Kimura K (1994) Identification of the heme compound copurified with deoxyribonucleic acid (DNA) from bloodstrains, a major inhibitor of polymerase chain reaction (PCR) amplification. J Foren Sci 39: 362–372.
[33]  Al-Soud WA, R?dstr?m P (2001) Purification and characterization of PCR-inhibitory components in blood cells. J Clin Microbiol 39: 485–493.
[34]  Thornton CG, Passen S (2004) Inhibition of PCR amplification by phytic acid, and treatment of bovine faecal specimens with phytase to reduce inhibition. J Microbiol Methods 59: 43–52.
[35]  Lantz PG, Tjerneld F, Hahn-H?gerdal B, R?dstr?m P (1997) Removal of PCR inhibitors from human faecal samples through the use of an aqueous two-phase system for sample preparation prior to PCR. J Microbiol Meth 28: 159–67.
[36]  Boom R, Sol CJ, Salimans MM, Jansen CL, Wertheim-van Dillen PM, et al. (1990) Rapid and simple method for purification of nucleic acids. J Clin Microbiol 28: 495–503.
[37]  Gandelman OA, Church VL, Moore CA, Kiddle G, Carne CA, et al. (2010) Novel bioluminescent quantitative detection of nucleic acid amplification in real-time. PLoS One 5: e14155.
[38]  Kiddle G, Hardinge P, Buttigieg N, Gandelman O, Pereira C, et al. (2012) GMO detection using a bioluminescent real time reporter (BART) of loop mediated isothermal amplification (LAMP) suitable for field use. BMC Biotechnol 12: 15.
[39]  M Molecular Detection System for Pathogen and Toxin Testing from 3M Food Safety Products. Available: http://solutions.3m.com/wps/portal/3M/en?_US/Microbiology/FoodSafety/product-appl?ications/two/?PC_7_RJH9U5230O0G602RVAFDH?B3026000000_nid=KFH17L9JD0beFSQWSZH9VKgl Accessed 22 November 2013.
[40]  Banoo S, Bell D, Bossuyt P, Herring A, Mabey D, et al. (2010) Evaluation of diagnostic tests for infectious diseases: general principles. TDR Diagnostics Evaluation Expert Panel. Nat Rev Microbiol 8: S17–29.
[41]  Pancholi P, Kelly C, Raczkowski M, Balada-Llasat JM (2012) Detection of toxigenic Clostridium difficile: comparison of the cell culture neutralization, Xpert C. difficile, Xpert C. difficile/Epi, and Illumigene C. difficile assays. J Clin Microbiol 50: 1331–1335.
[42]  Kozak K, Elagin V, Norén T, Unemo M (2011) Targeting the tcdA Gene: Is This Appropriate for Detection of A and/or B Clostridium difficile Toxin-Producing Strains? J Clin Microbiol 49: 2383–2384.
[43]  Viala C, Le Monnier A, Maataoui N, Rousseau C, Collignon A, et al. (2012) Comparison of commercial molecular assays for toxigenic Clostridium difficile detection in stools: BD GeneOhm Cdiff, XPert C. difficile and illumigene C. difficile. J Microbiol Methods 90: 83–85.
[44]  Bélanger SD, Boissinot M, Clairoux N, Picard FJ, Bergeron MG (2003) Rapid detection of Clostridium difficile in feces by real-time PCR. Clin Microbiol 41: 730–734.
[45]  de Jong E, de Jong AS, Bartels CJ, van der Rijt-van den Biggelaar C, et al. (2012) Clinical and laboratory evaluation of a real-time PCR for Clostridium difficile toxin A and B genes. Eur J Clin Microbiol Infect Dis 31: 2219–2225.
[46]  Kato H, Kita H, Karasawa T, Maegawa T, Koino Y, et al. (2001) Colonisation and transmission of Clostridium difficile in healthy individuals examined by PCR ribotyping and pulsed-field gel electrophoresis. J Med Microbiol 50: 720–727.
[47]  Ryan J, Murphy C, Twomey C, Paul Ross R, Rea MC, et al. (2010) Asymptomatic carriage of Clostridium difficile in an Irish continuing care institution for the elderly: prevalence and characteristics. Ir J Med Sci 179: 245–250.
[48]  Kyne L, Warny M, Qamar A, Kelly CP (2000) Asymptomatic carriage of Clostridium difficile and serum levels of IgG antibody against toxin A. N Engl J Med. 342: 390–397.
[49]  Shim JK, Johnson S, Samore MH, Bliss DZ, Gerding DN (1998) Primary symptomless colonisation by Clostridium difficile and decreased risk of subsequent diarrhoea. Lancet 351: 633–636.
[50]  Riggs MM, Sethi AK, Zabarsky TF, Eckstein EC, Jump RL, et al. (2007) Asymptomatic carriers are a potential source for transmission of epidemic and nonepidemic Clostridium difficile strains among long-term care facility residents. Clin Infect Dis 45: 992–998.
[51]  Simor AE, Bradley SF, Strausbaugh LJ, Crossley K (2002) Nicolle LE; SHEA Long-Term-Care Committee (2002) Clostridium difficile in long-term-care facilities for the elderly. Infect Control Hosp Epidemiol 23: 696–703.
[52]  Huang S, Do J, Mahalanabis M, Fan A, Zhao L, et al. (2013) Low cost extraction and isothermal amplification of DNA for infectious diarrhea diagnosis. PLoS One 8: e60059.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133