The Brazilian population was formed by extensive admixture of three different ancestral roots: Amerindians, Europeans and Africans. Our previous work has shown that at an individual level, ancestry, as estimated using molecular markers, was a poor predictor of color in Brazilians. We now investigate if SNPs known to be associated with human skin pigmentation can be used to predict color in Brazilians. For that, we studied the association of fifteen SNPs, previously known to be linked with skin color, in 243 unrelated Brazilian individuals self-identified as White, Browns or Blacks from Rio de Janeiro and 212 unrelated Brazilian individuals self-identified as White or Blacks from S?o Paulo. The significance of association of SNP genotypes with self-assessed color was evaluated using partial regression analysis. After controlling for ancestry estimates as covariates, only four SNPs remained significantly associated with skin pigmentation: rs1426654 and rs2555364 within SLC24A5, rs16891982 at SLC45A2 and rs1042602 at TYR. These loci are known to be involved in melanin synthesis or transport of melanosomes. We found that neither genotypes of these SNPs, nor their combination with biogeographical ancestry in principal component analysis, could predict self-assessed color in Brazilians at an individual level. However, significant correlations did emerge at group level, demonstrating that even though elements other than skin, eye and hair pigmentation do influence self-assessed color in Brazilians, the sociological act of self-classification is still substantially dependent of genotype at these four SNPs.
References
[1]
Pena SDJ, Di Pietro G, Fuchshuber-Moraes M, Genro JP, Hutz MH, et al. (2011) The genomic ancestry of individuals from different geographical regions of Brazil is more uniform than expected. PloS One 6(2): e17063.
[2]
Telles EE (2002) Racial Ambiguity Among the Brazilian Population. Ethnic and Racial Studies 25(2): 415–441.
[3]
Guimar?es ASA (1996) Cor, classe e status nos estudos de Pierson, Azevedo e Harris na Bahia:1940–1960. In: Marcos Chor Maio, Santos RV, Ra?a, Ciência e Sociedade 1ed. Rio de Janeiro: Fiocruz/Centro Cultural do Banco do Brasil. pp.143–148.
[4]
Osorio RG (2003) O Sistema classificatório de cor ou ra?a do IBGE. Texto para Discuss?o. Brasília: Instituto de Pesquisa Econ?mica Aplicada. 51.
[5]
Petruccelli JL (2007) Brazilian ethnoracial classification and affirmative action policies: Where are we and where do we go? Available:http://www.ciqss.umontreal.ca/Docs/SSDE/?pdf/Petrucelli.pdf. Accessed 08 may 2013.
[6]
Parra FC, Amado RC, Lambertucci JR, Rocha J, Antunes CM, et al. (2003) Color and genomic ancestry in Brazilians. Proc Natl Acad Sci USA. 100: 177–182.
[7]
Pimenta JR, Rocha J, Bydlowski SP, Pena SDJ (2006) Color and genomic ancestry in Brazilians: a study with forensic microsatellites. Human Hered. 62(4): 190–195.
[8]
Pena SDJ, Bastos-Rodrigues L, Pimenta JR, Bydlowski SP (2009) DNA tests probe the genomic ancestry of Brazilians. Braz J Med Biol Res 42(10): 870–876.
[9]
Bastos-Rodrigues L, Pimenta JR, Pena SDJ (2006) The genetic structure of human populations studied through short insertion-deletion polymorphisms. Ann Hum Genet 70(Pt5): 658–665.
[10]
Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2): 945–959.
[11]
Gaunt TR, Rodríguez S, Day IN (2007) Cubic exact solutions for the estimation of pairwise haplotype frequencies: implications for linkage disequilibrium analyses and a web tool “CubeX”. BMC Bioinformatics 8: 428.
[12]
Bonilla C, Boxill LA, Donald SAM, Williams T, Sylvester N, et al. (2005) The 8818G allele of the agouti signaling protein (ASIP) gene is ancestral and is associated with darker skin color in African Americans. Human genetics 116(5): 402–406.
[13]
Sulem P, Gudbjartsson DF, Stacey SN, Helgason A, Rafnar T, et al. (2007) Genetic determinants of hair, eye and skin pigmentation in Europeans. Nature Genetics 39(12): 1443–1452.
[14]
Sulem P, Gudbjartsson DF, Stacey SN, Helgason A, Rafnar T, et al. (2008) Two newly identified genetic determinants of pigmentation in Europeans. Nature genetics 40: 835–837.
[15]
Giardina E, Pietrangeli I, Martínez-labarga C, Martone C, Angelis F De, et al. (2008) Haplotypes in SLC24A5 Gene as Ancestry Informative Markers in Different Populations. Curr Genomics 9(2): 110–114.
[16]
Sturm R (2009) Molecular genetics of human pigmentation diversity. Human Mol Genet 18(R1): R9–R17.
[17]
Sturm RA, Larsson M (2009) Genetics of human iris colour and patterns. Pigment Cell Melanoma Res 22(5): 544–562.
[18]
Valenzuela RK, Henderson MS, Walsh MH, Garrison NA, Kelch JT, et al. (2010) Prediction phenotype from genotype: Normal pigmentation. J Forensic Sci 55(2): 315–322.
[19]
Stokowski RP, Pant PVK, Dadd T, Fereday A, Hinds D a, et al. (2007) A genomewide association study of skin pigmentation in a South Asian population. Am J Human Genet 81(6): 1119–1132.
[20]
Cook AL, Chen W, Thurber AE, Smit DJ, Smith AG, et al. (2009) Analysis of cultured human melanocytes based on polymorphisms within the SLC45A2/MATP, SLC24A5/NCKX5, and OCA2/P loci. Journal Invest Dermatol 129(2): 392–405.
[21]
Beleza S, Johnson N a, Candille SI, Absher DM, Coram M a, et al. (2013) Genetic Architecture of Skin and Eye Color in an African-European Admixed Population. PLoS Genetics 9: e1003372.
[22]
Lamason RL, Mohideen M-APK, Mest JR, Wong AC, Norton HL, et al. (2005) SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans. Science 310(5755): 1782–1786.
[23]
Cheng KC, Canfield VA (2006) The role of SLC24A5 in skin color. Exp Dermatol 15(10): 836–838.
[24]
Ginger RS, Askew SE, Ogborne RM, Wilson S, Ferdinando D, et al. (2008) SLC24A5 encodes a trans-Golgi network protein with potassium-dependent sodium-calcium exchange activity that regulates human epidermal melanogenesis. J Biol Chem 283(9): 5486–5495.
[25]
Fukamachi S, Shimada A, Shima A (2001) Mutations in the gene encoding B, a novel transporter protein, reduce melanin content in medaka. Nat Gen 28(4): 381–385.
[26]
Graf J, Hodgson R, Van Daal A (2005) Single nucleotide polymorphisms in the MATP gene are associated with normal human pigmentation variation. Hum Mutat 25(3): 278–284.
[27]
Inagaki K, Suzuki T, Ito S, Suzuki N, Adachi K, et al. (2006) Oculocutaneous albinism type 4: six novel mutations in the membrane-associated transporter protein gene and their phenotypes. Pigment Cell Res 19(5): 451–453.
[28]
Norton HL, Kittles RA, Parra E, McKeigue P, Mao X, et al. (2007) Genetic evidence for the convergent evolution of light skin in Europeans and East Asians. Mol Biol Evol 24(3): 710–722.
[29]
Tripathi RK, Hearing VJ, Urabe K, Aroca P, Spritz RA (1992) Mutational mapping of the catalytic activities of human tyrosinase. J Biol Chem 267(33): 23707–23712.
[30]
Park HY, Perez JM, Laursen R, Hara M, Gilchrest B A (1999) Protein kinase C-beta activates tyrosinase by phosphorylating serine residues in its cytoplasmic domain. J Bio Chem 274(23): 16470–16478.
[31]
Rosenberg NA (2004) Distruct: a program for the graphical display of population structure. Mol Ecol 4: 137–138.
[32]
Gon?alves VF, Carvalho CMB, Bortolini MC, Bydlowski SP, Pena SDJ (2008) The phylogeography of African Brazilians. Human Hered 65(1): 23–32.
[33]
Bastos JL, Peres MA, Peres KG, Dumith SC, Gigante DP (2008) Socioeconomic differences between self- and interviewer- classifi cation of color/race. 42. Rev Saude Publica 42(2): 324–334.
[34]
Ossorio PN (2006) About face: forensic genetic testing for race and visible traits. J Law, Med Ethics 34(2): 277–292.
[35]
Tully G (2007) Genotype versus phenotype: human pigmentation. Forensic Sci Int Genet 1(2): 105–110.
[36]
Suarez-Kurtz G, Perini JA, Bastos-Rodrigues L, Pena SDJ, Scruchiner C (2007) Impact of population admixture on the distribution of the CYP3A5*3 polymorfism. Pharmacogenomics 8(10): 1299–1306.
[37]
Suarez-Kurtz G, Vargens D, Scruchiner CJ, Bastos-Rodrigues L, Pena SDJ (2007) Self-reported skin color, genomic, ancestry and the distribution of GST polymorphisms. Pharmacogenetic and Genomics 17(9): 765–772.
[38]
Bydlowski SP, De Moura-Neto RS, Soares RP, Silva R, Debes-Bravo AA, et al. (2003) Genetic data on 12 STRs: (F13A01, F13B, FESFPS, LPL, CSF1PO, TPOX, TH01, vWA, D16S539, D7S820, D13S317, D5S818) from four ethnic groups of S?o Paulo, Brazil. Forensic Sci Int 135(1): 67–71.
[39]
Nan H, Kraft P, Qureshi AA, Guo Q, Chen C, et al. (2009) Genome-Wide Association Study of Tanning Phenotype in a Population of European Ancestry. J Invest Dermatol 129(9): 2250–2257.
[40]
Visser M, Kayser M, Palstra R (2012) HERC2 rs12913832 modulates human pigmentation by attenuating chromatin-loop formation between a long-range enhancer and the OCA2 promoter. Genome Res 22(3): 446–455.
[41]
Spichenok O, Budimlija ZM, Mitchell AA, Jenny A, Kovacevic L, et al. (2011) Prediction of eye and skin color in diverse populations using seven SNPs. Forensic Sci Int Genet 5(5): 472–478.
[42]
Beleza S, McEvoy AM dos SB, Alves I, Martinho C, Cameron E, et al. (2012) The timing of pigmentation lightening in Europeans. Molecular biology and evolution. Mol Biol Evol 30(1): 24–35.
[43]
Branicki W, Brudnik U, Wojas-Pelc A (2009) Interactions between HERC2, OCA2 and MC1R may influence human pigmentation phenotype. Ann Hum Genet 73(2): 160–170.
[44]
Pneuman A, Budimlija ZM, Caragine T, Prinz M (2012) Verification of eye and skin color predictors in various populations. Legal Medicine 14(2): 78–83.
[45]
Han J, Kraft P, Nan H, Guo Q, Chen C, et al. (2008) A genome-wide association study identifies novel alleles associated with hair color and skin pigmentation. PLoS Genet 4(5): e1000074.
[46]
Nikamo P, St?hle M (2012) Cost-effective HLA-Cw06:02 typing in a Caucasian population. Exp Dermatol 21(3): 221–223.
[47]
Tsetskhladze ZR, Canfield VA, Ang KC, Wentzel SM, Reid KP, et al. (2012) Functional assessment of human coding mutations affecting skin pigmentation using zebrafish. PloS One 7(10): e47398.
[48]
Valenzuela RK, Ito S, Wakamatsu K (2011) Prediction Model Validation: Normal Human Pigmentation Variation. J Forensic Res 2: 1–12.
[49]
Weber JL, David D, Heil J, Fan Y, Zhao C, et al. (2002) Human diallelic insertion/deletion polymorphisms. Am J Hum Genet 71(4): 854–862.
[50]
Schoonjans F, Zalata A, Depuydt CE, Comhaire FH (1995) MedCalc: a new computer program for medical statistics. Comput Meth Programs Biomed 48 (3): 257–262.
[51]
R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (Ed.). http://www.r-project.org.