Is Serum Zinc Associated with Pancreatic Beta Cell Function and Insulin Sensitivity in Pre-Diabetic and Normal Individuals? Findings from the Hunter Community Study
Aim To determine if there is a difference in serum zinc concentration between normoglycaemic, pre-diabetic and type-2 diabetic groups and if this is associated with pancreatic beta cell function and insulin sensitivity in the former 2 groups. Method Cross sectional study of a random sample of older community-dwelling men and women in Newcastle, New South Wales, Australia. Beta cell function, insulin sensitivity and insulin resistance were calculated for normoglycaemic and prediabetes participants using the Homeostasis Model Assessment (HOMA-2) calculator. Result A total of 452 participants were recruited for this study. Approximately 33% (N = 149) had diabetes, 33% (N = 151) had prediabetes and 34% (N = 152) were normoglycaemic. Homeostasis Model Assessment (HOMA) parameters were found to be significantly different between normoglycaemic and prediabetes groups (p<0.001). In adjusted linear regression, higher serum zinc concentration was associated with increased insulin sensitivity (p = 0.01) in the prediabetic group. There was also a significant association between smoking and worse insulin sensitivity. Conclusion Higher serum zinc concentration is associated with increased insulin sensitivity. Longitudinal studies are required to determine if low serum zinc concentration plays a role in progression from pre-diabetes to diabetes.
References
[1]
Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes estimates for the year 2000 and projections for 2030. Diabetes Care 27: 1047–1053.
[2]
WHO (2012) Diabetes fact sheet No. 312. World Health Organization.
[3]
Engelgau MM, Narayan K, Herman WH (2000) Screening for type 2 diabetes. Diabetes Care 23: 1563–1580.
[4]
Stumvoll M, Goldstein BJ, van Haeften TW (2005) Type 2 diabetes: principles of pathogenesis and therapy. The Lancet 365: 1333–1346.
[5]
Kazi TG, Afridi HI, Kazi N, Jamali MK, Arain MB, et al. (2008) Copper, chromium, manganese, iron, nickel, and zinc levels in biological samples of diabetes mellitus patients. Biological Trace Element Research 122: 1–18.
[6]
Chen H, Tan C (2012) Prediction of type-2 diabetes based on several element levels in blood and chemometrics. Biological Trace Element Research 147: 67–74.
[7]
Meyer JA, Spence DM (2009) A perspective on the role of metals in diabetes: past findings and possible future directions. Metallomics 1: 32–41.
[8]
Noormagi A, Gavrilova J, Smirnova J, T?ugu V, Palumaa P (2010) Zn (II) ions co-secreted with insulin suppress inherent amyloidogenic properties of monomeric insulin. Biochem J 430: 511–518.
[9]
Chausmer AB (1998) Zinc, insulin and diabetes. Journal of the American College of Nutrition 17: 109–115.
[10]
Zheng Y, Li XK, Wang Y, Cai L (2008) The Role of Zinc, Copper and Iron in the Pathogenesis of Diabetes and Diabetic Complications: Therapeutic Effects by Chelators*. Hemoglobin 32: 135–145.
[11]
Tallman DL, Taylor CG (1999) Potential interactions of zinc in the neuroendocrine-endocrine disturbances of diabetes mellitus type 2. Canadian journal of physiology and pharmacology 77: 919–933.
[12]
Adachi Y, Yoshida J, Kodera Y, Kiss T, Jakusch T, et al. (2006) Oral administration of a zinc complex improves type 2 diabetes and metabolic syndromes. Biochemical & Biophysical Research Communications 351: 165–170.
[13]
Simon SF, Taylor CG (2001) Dietary zinc supplementation attenuates hyperglycemia in db/db mice. Experimental Biology & Medicine 226: 43–51.
[14]
Sun Q, van Dam RM, Willett WC, Hu FB (2009) Prospective study of zinc intake and risk of type 2 diabetes in women. Diabetes Care 32: 629–634.
[15]
Beletate V, El Dib RP, Atallah AN (2007) Zinc supplementation for the prevention of type 2 diabetes mellitus. Cochrane Database of Systematic Reviews CD005525.
[16]
Jayawardena R, Ranasinghe P, Galappatthy P, Malkanthi R, Constantine G, et al. (2012) Effects of zinc supplementation on diabetes mellitus: a systematic review and meta-analysis. Diabetology & Metabolic Syndrome 4: 13.
[17]
Twigg SM, Kamp MC, Davis TM, Neylon EK, Flack JR (2007) Prediabetes: a position statement from the Australian Diabetes Society and Australian Diabetes Educators Association. Medical journal of Australia 186: 461.
[18]
Nathan DM, Davidson MB, DeFronzo RA, Heine RJ, Henry RR, et al. (2007) Impaired fasting glucose and impaired glucose tolerance implications for care. Diabetes Care 30: 753–759.
[19]
McEvoy M, Smith W, D'Este C, Duke J, Peel R, et al. (2010) Cohort profile: The Hunter Community Study. International journal of epidemiology 39: 1452–1463.
[20]
Dillman DA (1978) Mail and telephone surveys: Wiley New York.
[21]
Wallace TM, Levy JC, Matthews DR (2004) Use and abuse of HOMA modeling. Diabetes Care 27: 1487–1495.
[22]
Health N, Council MR (2009) Australian guidelines to reduce health risks from drinking alcohol. NHMRC Canberra
[23]
Islam MR, Arslan I, Attia J, McEvoy M, McElduff P, et al. (2013) Is Serum Zinc Level Associated with Prediabetes and Diabetes?: A Cross-Sectional Study from Bangladesh. PLoS One 8: e61776.
[24]
Rahim A, Iqbal K (2011) To assess the levels of zinc in serum and changes in the lens of diabetic and senile cataract patients. JPMA - Journal of the Pakistan Medical Association 61: 853–855.
[25]
Ekmekcioglu C, Prohaska C, Pomazal K, Steffan I, Schernthaner G, et al. (2001) Concentrations of seven trace elements in different hematological matrices in patients with type 2 diabetes as compared to healthy controls. Biological Trace Element Research 79: 205–219.
[26]
Zargar AH, Shah NA, Masoodi SR, Laway BA, Dar FA, et al. (1998) Copper, zinc, and magnesium levels in non-insulin dependent diabetes mellitus. Postgraduate Medical Journal 74: 665–668.
[27]
Schuhmacher M, Domingo J, Corbella J (1994) Zinc and copper levels in serum and urine: relationship to biological, habitual and environmental factors. Science of the total environment 148: 67–72.
[28]
Usha D, Girish H, Venugopal PM, Pratibha D, Archana S, et al. (2009) Zinc Deficiency: Descriptive Epidemiology and Morbidity among Preschool Children in Peri-urban Population in Delhi, India. Journal of Health Population and Nutrition 27: 632–639.
[29]
Wessells KR, Brown KH (2012) Estimating the Global Prevalence of Zinc Deficiency: Results Based on Zinc Availability in National Food Supplies and the Prevalence of Stunting. PLoS One 7: e50568.
[30]
Nriagu J (2010) Zinc deficiency in human health. Encyclopedia of Environmental Health 789–800.
[31]
Olivares M, Pizarro F, Ruz M (2007) New insights about iron bioavailability inhibition by zinc. Nutrition 23: 292–295.
[32]
Wiernsperger N, Rapin J (2010) Trace elements in glucometabolic disorders: an update. Wiernsperger and Rapin Diabetology & Metabolic Syndrome 2.
[33]
Hashemipour M, Kelishadi R, Shapouri J, Sarrafzadegan N, Amini M, et al. (2009) Effect of zinc supplementation on insulin resistance and components of the metabolic syndrome in prepubertal obese children. Hormones (Athens) 8: 279–285.
[34]
Marreiro DN, Geloneze B, Tambascia MA, Lerário AC, Halpern A, et al. (2004) Participation of zinc in insulin resistance. Arquivos Brasileiros de Endocrinologia & Metabologia 48: 234–239.
[35]
Singh RB, Niaz MA, Rastogi SS, Bajaj S, Gaoli Z, et al. (1998) Current zinc intake and risk of diabetes and coronary artery disease and factors associated with insulin resistance in rural and urban populations of North India. Journal of the American College of Nutrition 17: 564–570.
[36]
Ognjanovic S, Jacobs DR, Steinberger J, Moran A, Sinaiko AR (2012) Relation of chemokines to BMI and insulin resistance at ages 18–21. Int J Obes (Lond)..
[37]
Ferrannini E, Natali A, Bell P, Cavallo-Perin P, Lalic N, et al. (1997) Insulin resistance and hypersecretion in obesity. European Group for the Study of Insulin Resistance (EGIR). J Clin Invest 100: 1166–1173.
[38]
Trirogoff ML, Shintani A, Himmelfarb J, Ikizler TA (2007) Body mass index and fat mass are the primary correlates of insulin resistance in nondiabetic stage 3–4 chronic kidney disease patients. Am J Clin Nutr 86: 1642–1648.
[39]
Ferrannini E, Camastra S, Gastaldelli A, Sironi AM, Natali A, et al. (2004) Beta-Cell Function in Obesity Effects of Weight Loss. Diabetes 53: S26–S33.
[40]
Bergman BC, Perreault L, Hunerdosse D, Kerege A, Playdon M, et al. (2012) Novel and reversible mechanisms of smoking-induced insulin resistance in humans. Diabetes 61: 3156–3166.
[41]
DeFronzo RA, Ferrannini E (1991) Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care 14: 173–194.
[42]
Forrer R, Gautschi K, Lutz H (2001) Simultaneous measurement of the trace elements Al, As, B, Be, Cd, Co, Cu, Fe, Li, Mn, Mo, Ni, Rb, Se, Sr, and Zn in human serum and their reference ranges by ICP-MS. Biological Trace Element Research 80: 77–93.
[43]
Lee J-H, Kim JH (2012) Comparison of serum zinc levels measured by inductively coupled plasma mass spectrometry in preschool children with febrile and afebrile seizures. Annals of laboratory medicine 32: 190–193.