The elucidation of the sources of n-3 fatty acids available for the humans in the Upper Palaeolithic and Neolithic is highly relevant in order to ascertain the availability of such nutrients in that time frame as well as to draw useful conclusions about healthy dietary habits for present-day humans. To this end, we have analysed fat from several frozen mammals found in the permafrost of Siberia (Russia). A total of 6 specimens were included in this study: 2 mammoths, i.e. baby female calf called “Lyuba” and a juvenile female called “Yuka”, both specimens approximately from the same time, i.e. Karginian Interstadial (41,000 and 34,000 years BP); two adult horses from the middle Holocene (4,600 and 4,400 years BP); and two bison very close to the Early Holocene (8,200 and 9,300 years BP). All samples were analysed by gas-liquid chromatography-mass spectrometry (GLC-MS) and GLC-flame ionization detector (GLC-FID). As demonstrated in this work, the fat of single-stomached mammals often consumed by Palaeolithic/Neolithic hunters contained suitable amounts of n-3 and n-6 fatty acids, possibly in quantities sufficient to meet the today's recommended daily intake for good health. Moreover, the results also suggest that mammoths and horses at that time were hibernators.
References
[1]
Eaton SB, Konner M (1985) Paleolithic nutrition.A consideration of its nature and current implications. New Eng J Med 312: 283–289.
[2]
Crawford MA, Bloom M, Broadhurst CL, Schmidt WF, Cunnane SC, et al. (1999) Evidence for the unique function of docosahexaenoic acid during the evolution of the modern hominid brain. Lipids 34: 9–47.
[3]
Cordain L, Watkins BA, Mann NJ (2001) Fatty Acid Composition and Energy Density of Foods Available to African Hominids. Evolutionary Implications for Human Brain Development. World Rev Nutr Diet 90: 44–161.
[4]
Svoboda J, Péan S, Wojtal P (2005) Mammoth bone deposits and subsistence practices during Mid-Upper Palaeolithic in Central Europe: three cases from Moravia and Poland. Quater Int 126/128: 209–221.
[5]
Bocherens H (2003) Isotopic biogeochemistry and the paleoecology of the mammoth steppe fauna. Deinsea 9: 57–76.
[6]
Obada T, van der Plicht J, Markova A, Prepelitsa A (2012) Preliminary results of studies of the Valea Morilor Upper Palaeolithic site (Chisinau, Republic of Moldova): A new camp of mammoth hunters. Quater Int 276–277: 227–241.
[7]
Germonpré M, Udrescu M, Fiers E (2012) Possible evidence of mammoth hunting at the Neanderthal site of Spy (Belgium). Quater Int doi: doi:10.1016/j.quaint.2012.10.035.
[8]
Nogués-Bravo D, Rodriguez J, Hortal J, Batra P, Araujo MB (2008) Climate change, humans, and the extinction of the woolly mammoth. PloS Biol 6: 685–692.
[9]
Mussi M, Villa P (2008) Single carcass of Mammuthus primigenius with lithic artefacts in the Upper Pleistocene of northern Italy. J Archaeol Sci 35: 2606–2613.
[10]
Zenin V, Leshchinskiy S, Zolotarev K, Grootes P, Nadeau MJ (2006) Lugovskoe: geoarcheology and culture of a Paleolithic site. Archaeol Ethnol Anthropol Eurasia 25: 41–53.
[11]
Basilyan A, Anisimov M, Nikolskiy P, Pitulko V (2011) Woolly mammoth mass accumulation next to the Palaeolithic Yana RHS site, Arctic Siberia: its geology, age and relation to past human activity. J Archaeol Sci 38: 2461–2474.
[12]
Boeskorov G, Tikhonov A, Lazarev P (2007) A new find of a mammoth calf. Dokl Biol Sci 417: 480–483.
[13]
Fisher DC, Tikhonov AN, Kosintsev PA, Rountrey AN, Buigues B, et al. (2011) Anatomy, death, and preservation of a woolly mammoth (Mammuthus primigenius) calf, Yamal Peninsula, northwest Siberia. Quater Int 255: 94–105.
[14]
Brand-Miller J, Mann N, Cordain L (2009) Paleolithic nutrition: what did our ancestors eat? In: Selinger A, Green A, editors. ISS 2009 Genes to Galaxies. Sydney: University Publishing Service. pp. 28–42.
[15]
Rincon Cervera MA, Venegas Venegas E, Ramos Bueno RP, Guil-Guerrero JL (2012) Synthesis and purification of structured triacylglycerols from evening primrose and viper's bugloss seed oils. Food Res Int 48: 769–776.
[16]
Doreau M (1994) Ferlay (1994) A Digestion and utilisation of fatty acids by ruminants. Anim Feed Sci Tech 45: 379–396.
[17]
Kosintsev PA, Lapteva EG, Trofimova SS, Zanina OG, Tikhonov AN, et al. (2012) Environmental reconstruction inferred from the intestinal contents of the Yamal baby mammoth Lyuba (Mammuthus primigenius Blumenbach, 1799). Quarter Int 255: 231–238.
[18]
Guil JL, Torija ME, Giménez JJ, Rodríguez I (1996) Identification of fatty acids in edible wild plants by gas chromatography. J Chromat A 719: 229–235.
[19]
Meyer HHD, Rowell A, Streich WJ, Stoffel B, Hofmann RR (1998) Accumulation of polyunsaturated fatty acids by concentrate selecting ruminants. Comp Biochem Physiol A Mol Integr Physiol 120: 263–268.
[20]
Mordovskaya VI, Krivoshapkin VG, Pogozheva AV (2006) The role of omega-3 polyunsaturated fatty acids found in young horse meat in the prevention of atherosclerosis among the indigenous population of the Republic Sakha (Yakutia). ICCH13 Proceedings. pp. 12–16.
[21]
Guil-Guerrero JL, Rincón-Cervera MA, Venegas-Venegas CE, Ramos-Bueno RP, Suárez-Medina MD (2013) Highly Bioavailable α-linolenic Acid from the Subcutaneous Fat of the Palaeolithic Relict “Galician horse”. Int Food Res J 20: 3249–3258.
[22]
Turner TD (2005) Evaluation of the effect of dietary forage and concentrate levels on the fatty acid profile of bison tissue. Doctoral dissertation: University of Saskatchewan. 187 p. Available: http://ecommons.usask.ca/bitstream/handl?e/10388/etd-01042006-114843/Bison-FA-stu?dy.pdf. Accessed 2013 Sep 25.
[23]
Makristathis A, Schwarzmeier J, Mader RM, Varmuza K, Simonitsch I, et al. (2002) Fatty acid composition and preservation of the Tyrolean Iceman and other mummies. J Lipid Res 43: 2056–2061.
[24]
Sampels S (2005) Fatty Acids and Antioxidants in Reindeer and Red Deer. Emphasis on Animal Nutrition and Consequent Meat Quality. Doctoral thesis. Upsala: Swedish University of Agricultural Sciences.
[25]
Rezanka T, Dembitsky VM (1999) Fatty Acids of Lichen Species from Tian Shan Mountains. Folia Microbiol 44: 643–646.
[26]
Glass RL, Jenness R (1971) Comparative biochemical studies of Milk-VI. Constituent fatty acids of milk fats of additional species. Compar Biochem Physiol B: Compar Biochem 38: 353–359.
[27]
Wood JD, Enser M, Fisher AV, Nute GR, Sheard PR, et al. (2008) Fat deposition, fatty acid composition and meat quality: A review. Meat Sci 78: 343–358.
[28]
Morgan ED, Titusz L, Small RJI, Edwards C (1983) The Composition of Fatty Materials from a Thule Eskimo Site on Herschel Island. Arctic 36: 356–360.
[29]
Zalewski K, Martysiak-?urowska D, Iwaniuk M, Nitkiewicz B (2007) Sto?yhwo (2007) A Characterization of Fatty Acid Composition in Eurasian Badger (Meles meles). Polish J Environ Stud 16: 645–650.
[30]
Florant GL (1998) Lipid Metabolism in Hibernators: The Importance of Essential Fatty Acids. Am Zoologist 38: 331–340.
[31]
K?kel? R, Hyv?rinen H (1996) Fatty acids in extremity tissues of Finnish beavers (Castor canadensis and Castor fiber) and muskrats (Ondatra zibethicus). Comp Biochem Physiol B l13: 113–124.