Background and Aims MET, the hepatocyte growth factor receptor, is a receptor tyrosine kinase overexpressed and activated in a subset of gastric cancer. Several studies investigated the relationship between MET amplification and expression with the clinical outcome in patients with gastric cancer, but yielded conflicting results. We performed a systematic review and meta-analysis to determine the influence of MET amplification and expression on prognosis in gastric cancer. Methods MEDLINE and EMBASE were searched for studies that explored the association between MET amplification and expression with survival in patients with gastric cancer up to 1 April, 2013. Data of individual hazard ratios (HRs) and 95% confidence intervals (CIs) for meta-analyses were extracted from the publications and combined in pooled HRs. Results Fourteen studies involving 2,258 patients with gastric cancer were included. It was suggested that MET overexpression had an unfavorable impact on survival of patients with gastric cancer, with HRs (95% CIs) of 2.57 (95% CI: 1.97–3.35) overall, 2.82 (95% CI: 1.86–4.27) among studies using amplification for measure scale of MET and 2.42 (95% CI: 1.66–3.54) for expression. The magnitude of association was reduced whereas remained statistically significant in high quality studies or in larger sample size studies and corresponding HRs were 2.18(1.76, 2.70) and 2.35(1.93, 2.87), respectively, without significant heterogeneity. Conclusion The findings from present study indicated that higher MET gene amplification and expression in gastric cancer was an indicator of poor prognosis.
References
[1]
Jemal A, Bray F (2011) Center MM, Ferlay J, Ward E, et al (2011) Global cancer statistics. CA Cancer J Clin 61: 69–90.
[2]
Bertuccio P, Chatenoud L, Levi F, Praud D, Ferlay J, et al. (2009) Recent patterns in gastric cancer: a global overview. Int J Cancer 125: 666–673.
[3]
Asaoka Y, Ikenoue T, Koike K (2011) New targeted therapies for gastric cancer. Expert Opin Investig Drugs 20: 595–604.
[4]
Oldenhuis CN, Oosting SF, Gietema JA, de Vries EG (2008) Prognostic versus predictive value of biomarkers in oncology. Eur J Cancer 44: 946–953.
[5]
Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, et al. (2010) Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 376: 687–697.
[6]
Trusolino L, Bertotti A, Comoglio PM (2010) MET signalling: principles and functions in development, organ regeneration and cancer. Nat Rev Mol Cell Biol 11: 834–848.
[7]
Peters S, Adjei AA (2012) MET: a promising anticancer therapeutic target. Nat Rev Clin Oncol 9: 314–326.
[8]
Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Group P (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339: b2535.
[9]
Jatoi I, Benson JR, Liau SS, Chen Y, Cisco RM, et al. (2010) The role of surgery in cancer prevention. Current Problems in Surgery 47: 750–830.
[10]
Parmar MK, Torri V, Stewart L (1998) Extracting summary statistics to perform meta-analyses of the published literature for survival endpoints. Stat Med 17: 2815–2834.
[11]
de Graeff P, Crijns AP, de Jong S, Boezen M, Post WJ, et al. (2009) Modest effect of p53, EGFR and HER-2/neu on prognosis in epithelial ovarian cancer: a meta-analysis. Br J Cancer 101: 149–159.
[12]
Gooden MJ, de Bock GH, Leffers N, Daemen T, Nijman HW (2011) The prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review with meta-analysis. Br J Cancer 105: 93–103.
[13]
Hayes DF, Bast RC, Desch CE, Fritsche H Jr, Kemeny NE, et al. (1996) Tumor marker utility grading system: a framework to evaluate clinical utility of tumor markers. J Natl Cancer Inst 88: 1456–1466.
[14]
McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, et al. (2005) Reporting recommendations for tumor marker prognostic studies. J Clin Oncol 23: 9067–9072.
[15]
DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7: 177–188.
Egger M, Smith GD (1998) Bias in location and selection of studies. BMJ 316: 61–66.
[18]
Tsugawa K, Yonemura Y, Hirono Y, Fushida S, Kaji M, et al. (1998) Amplification of the c-met, c-erbB-2 and epidermal growth factor receptor gene in human gastric cancers: correlation to clinical features. Oncology 55: 475–481.
[19]
Toiyama Y, Yasuda H, Saigusa S, Matushita K, Fujikawa H, et al. (2012) Co-expression of hepatocyte growth factor and c-Met predicts peritoneal dissemination established by autocrine hepatocyte growth factor/c-Met signaling in gastric cancer. Int J Cancer 130: 2912–2921.
[20]
Graziano F, Galluccio N, Lorenzini P, Ruzzo A, Canestrari E, et al. (2011) Genetic activation of the MET pathway and prognosis of patients with high-risk, radically resected gastric cancer. J Clin Oncol 29: 4789–4795.
[21]
Li Y, Chen CQ, He YL, Cai SR, Yang DJ, et al. (2012) Abnormal expression of E-cadherin in tumor cells is associated with poor prognosis of gastric carcinoma. J Surg Oncol 106: 304–310.
[22]
Shi J, Yao D, Liu W, Wang N, Lv H, et al. (2012) Frequent gene amplification predicts poor prognosis in gastric cancer. Int J Mol Sci 13: 4714–4726.
[23]
Lee J, Seo JW, Jun HJ, Ki CS, Park SH, et al. (2011) Impact of MET amplification on gastric cancer: possible roles as a novel prognostic marker and a potential therapeutic target. Oncol Rep 25: 1517–1524.
[24]
Lee HE, Kim MA, Lee HS, Jung EJ, Yang HK, et al. (2012) MET in gastric carcinomas: comparison between protein expression and gene copy number and impact on clinical outcome. Br J Cancer 107: 325–333.
[25]
Huang TJ, Wang JY, Lin SR, Lian ST, Hsieh JS (2001) Overexpression of the c-met protooncogene in human gastric carcinoma–correlation to clinical features. Acta Oncol 40: 638–643.
[26]
Drebber U, Baldus SE, Nolden B, Grass G, Bollschweiler E, et al. (2008) The overexpression of c-met as a prognostic indicator for gastric carcinoma compared to p53 and p21 nuclear accumulation. Oncol Rep 19: 1477–1483.
[27]
Nakajima M, Sawada H, Yamada Y, Watanabe A, Tatsumi M, et al. (1999) The prognostic significance of amplification and overexpression of c-met and c-erb B-2 in human gastric carcinomas. Cancer 85: 1894–1902.
[28]
Taniguchi K, Yonemura Y, Nojima N, Hirono Y, Fushida S, et al. (1998) The relation between the growth patterns of gastric carcinoma and the expression of hepatocyte growth factor receptor (c-met), autocrine motility factor receptor, and urokinase-type plasminogen activator receptor. Cancer 82: 2112–2122.
[29]
Zhao J, Zhang X, Xin Y (2011) Up-regulated expression of Ezrin and c-Met proteins are related to the metastasis and prognosis of gastric carcinomas. Histol Histopathol 26: 1111–1120.
[30]
Kubicka S, Claas C, Staab S, Kuhnel F, Zender L, et al. (2002) p53 mutation pattern and expression of c-erbB2 and c-met in gastric cancer: relation to histological subtypes, Helicobacter pylori infection, and prognosis. Dig Dis Sci 47: 114–121.
[31]
Catenacci DV, Cervantes G, Yala S, Nelson EA, El-Hashani E, et al. (2011) RON (MST1R) is a novel prognostic marker and therapeutic target for gastroesophageal adenocarcinoma. Cancer Biol Ther 12: 9–46.
[32]
Zhuang X, Zheng J, Lin S, Sun G, Li Y (2000) [The prognostic significance of expression of c-met oncogene and its relation to gastric mucosal lesions]. Zhonghua Bing Li Xue Za Zhi 29: 409–411.
[33]
Meert AP, Martin B, Delmotte P, Berghmans T, Lafitte JJ, et al. (2002) The role of EGF-R expression on patient survival in lung cancer: a systematic review with meta-analysis. Eur Respir J 20: 975–981.
[34]
Sierra JR, Tsao MS (2011) c-MET as a potential therapeutic target and biomarker in cancer. Ther Adv Med Oncol 3: S21–35.
[35]
Smith RA, Tang J, Tudur-Smith C, Neoptolemos JP, Ghaneh P (2011) Meta-analysis of immunohistochemical prognostic markers in resected pancreatic cancer. Br J Cancer 104: 1440–1451.
[36]
Yonemura Y, Kaji M, Hirono Y, Fushida S, Tsugawa K, et al. (1996) Correlation between overexpression of c-met gene and the progression of gastric cancer. Int J Oncol 8: 555–560.
[37]
Yonemura Y, Nojima N, Kaji M, Kawamura T, Fushida S, et al. (1997) E-cadherin and c-met expression as a prognostic factor in gastric cancer. Oncology Reports 4: 743–748.
[38]
Amemiya H, Menolascino F, Pena A (2010) [Role of the expression of c-Met receptor in the progression of gastric cancer]. Invest Clin 51: 369–380.
[39]
Wu HB, Zhang P, Li XQ, Wu JG, Yu JW, et al. (2009) Expression of c-met, e2f-1 and Ki-67 in tissues of gastric cancer. Journal of Shanghai Jiaotong University (Medical Science) 29: 1482–1486.
[40]
Bamias A, Karina M, Papakostas P, Kostopoulos I, Bobos M, et al. (2010) A randomized phase iii study of adjuvant platinum/docetaxel chemotherapy with or without radiation therapy in patients with gastric cancer. Cancer Chemotherapy and Pharmacology 65: 1009–1021.
[41]
Ge SH, Wu XJ, Wang XH, Xing XF, Zhang LH, et al. (2011) Over-expression of metastasis-associated in colon cancer-1 (MACC1) associates with better prognosis of gastric cancer patients. Chinese Journal of Cancer Research 23: 153–159.
[42]
Kuniyasu H, Yasui W, Kitadai Y, Yokozaki H, Ito H, et al. (1992) Frequent amplification of the c-met gene in scirrhous type stomach cancer. Biochem Biophys Res Commun 189: 227–232.
[43]
Lennerz JK, Kwak EL, Ackerman A, Michael M, Fox SB, et al. (2011) MET amplification identifies a small and aggressive subgroup of esophagogastric adenocarcinoma with evidence of responsiveness to crizotinib. J Clin Oncol 29: 4803–4810.
[44]
Janjigian YY, Tang LH, Coit DG, Kelsen DP, Francone TD, et al. (2011) MET expression and amplification in patients with localized gastric cancer. Cancer Epidemiol Biomarkers Prev 20: 1021–1027.