Background Dairy products consumption is increasingly common globally. Most of the evidence concerning dairy products comes from observational studies in western populations which are inevitably open to confounding. To triangulate the evidence concerning dairy products, we examined the associations of whole cow's milk consumption with cardiovascular risk factors in a non-Western setting with a different pattern of milk consumption and cardiovascular diseases from Western populations. Methods We used multivariable censored linear or logistic regression to examine cross-sectionally the adjusted associations of whole cow's milk consumption (none (n = 14892), 1–3/week (n = 2689) and 3+/week (n = 2754)) with cardiovascular risk factors in Chinese (≥50 years) in the Guangzhou Biobank Cohort Study. Results Whole cow's milk consumption was negatively associated with systolic blood pressure (3+/week compared to none ?2.56 mmHg, 95% confidence interval (CI) ?3.63 to ?1.49), diastolic blood pressure (?1.32 mmHg, 95% CI ?1.87 to ?0.77) and triglycerides (?0.06 mmol/L, 95% CI ?0.11 to ?0.002), but was positively associated with HDL-cholesterol (0.02 mmol/L,95% CI 0.01 to 0.04) and fasting glucose (0.08 mmol/L, 95% CI 0.01 to 0.16) adjusted for age, sex, phase of study, socio-economic position, lifestyle (smoking, alcohol use and physical activity) and adiposity, but had no obvious association with LDL-cholesterol or the presence of diabetes. Conclusions Whole cow's milk consumption had heterogeneous associations with cardiovascular risk factors. Higher whole cow's milk consumption was associated with lower levels of specific cardiovascular risk factors which might suggest risk factor specific biological pathways with different relations to blood pressure and lipids than glucose.
References
[1]
Mendis S PP, Norrving B (2011) Global Atlas on Cardiovascular Disease Prevention and Control. WHO.
[2]
Soedamah-Muthu SS, Ding EL, Al-Delaimy WK, Hu FB, Engberink MF, et al. (2011) Milk and dairy consumption and incidence of cardiovascular diseases and all-cause mortality: dose-response meta-analysis of prospective cohort studies. Am J Clin Nutr 93: 158–171.
[3]
Tong X, Dong JY, Wu ZW, Li W, Qin LQ (2011) Dairy consumption and risk of type 2 diabetes mellitus: a meta-analysis of cohort studies. Eur J Clin Nutr 65: 1027–1031.
[4]
Avalos EE, Barrett-Connor E, Kritz-Silverstein D, Wingard DL, Bergstrom JN, et al.. (2012) Is dairy product consumption associated with the incidence of CHD? Public Health Nutrition: 1–9.
[5]
Huth PJ, Park KM (2012) Influence of Dairy Product and Milk Fat Consumption on Cardiovascular Disease Risk: A Review of the Evidence. Advances in Nutrition 3: 266–285.
[6]
Larsson SC, Mannisto S, Virtanen MJ, Kontto J, Albanes D, et al. (2009) Dairy foods and risk of stroke. Epidemiology 20: 355–360.
[7]
James WP, Nelson M, Ralph A, Leather S (1997) Socioeconomic determinants of health. The contribution of nutrition to inequalities in health. BMJ: British Medical Journal 314: 1545–1549.
[8]
Sanchez-Villegas A, Martinez JA, Prattala R, Toledo E, Roos G, et al. (2003) A systematic review of socioeconomic differences in food habits in Europe: consumption of cheese and milk. Eur J Clin Nutr 57: 917–929.
[9]
Smith AM, Baghurst KI (1992) Public-Health Implications of Dietary Differences between Social-Status and Occupational Category Groups. Journal of Epidemiology and Community Health 46: 409–416.
[10]
Galobardes B, Davey Smith G, Lynch JW (2006) Systematic review of the influence of childhood socioeconomic circumstances on risk for cardiovascular disease in adulthood. Annals of Epidemiology 16: 91–104.
[11]
U.S. Department of Agriculture and U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2010 7th Edition, Washington, DC: U.S. Government Printing Office, December 2010.
[12]
Delgado CL (2003) Rising consumption of meat and milk in developing countries has created a new food revolution. Journal of Nutrition 133: 3907s–3910s.
[13]
Alonso A, Zozaya C, Vazquez Z, Alfredo Martinez J, Martinez-Gonzalez MA (2009) The effect of low-fat versus whole-fat dairy product intake on blood pressure and weight in young normotensive adults. J Hum Nutr Diet 22: 336–342.
[14]
Rossouw JE, Burger EM, Van der Vyver P, Ferreira JJ (1981) The effect of skim milk, yoghurt, and full cream milk on human serum lipids. Am J Clin Nutr 34: 351–356.
[15]
Naito C (1990) The effect of milk intake on serum cholesterol in healthy young females. Randomized controlled studies. Ann N Y Acad Sci 598: 482–490.
[16]
Almon R, Alvarez-Leon EE, Engfeldt P, Serra-Majem L, Magnuson A, et al. (2010) Associations between lactase persistence and the metabolic syndrome in a cross-sectional study in the Canary Islands. Eur J Nutr 49: 141–146.
[17]
Kinjo Y, Beral V, Akiba S, Key T, Mizuno S, et al. (1999) Possible protective effect of milk, meat and fish for cerebrovascular disease mortality in Japan. J Epidemiol 9: 268–274.
[18]
Sauvaget C, Nagano J, Allen N, Grant EJ, Beral V (2003) Intake of animal products and stroke mortality in the Hiroshima/Nagasaki Life Span Study. International Journal of Epidemiology 32: 536–543.
[19]
Kirii K, Mizoue T, Iso H, Takahashi Y, Kato M, et al. (2009) Calcium, vitamin D and dairy intake in relation to type 2 diabetes risk in a Japanese cohort. Diabetologia 52: 2542–2550.
[20]
Villegas R, Gao YT, Dai Q, Yang G, Cai H, et al. (2009) Dietary calcium and magnesium intakes and the risk of type 2 diabetes: the Shanghai Women's Health Study. American Journal of Clinical Nutrition 89: 1059–1067.
[21]
Jiang CQ, Thomas GN, Lam TH (2006) Schooling CM, Zhang WS, et al (2006) Cohort Profile: The Guangzhou Biobank Cohort Study, a Guangzhou-Hong Kong-Birmingham collaboration. International Journal of Epidemiology 35: 844–852.
[22]
Wilson PWF, D'Agostino RB, Levy D, Belanger AM, Silbershatz H, et al. (1998) Prediction of coronary heart disease using risk factor categories. Circulation 97: 1837–1847.
[23]
Stern MP, Williams K, Haffner SA (2002) Identification of persons at high risk for type 2 diabetes mellitus: Do we need the oral glucose tolerance test? Annals of Internal Medicine 136: 575–581.
[24]
Franklin SS, Khan SA, Wong ND, Larson MG, Levy D (1999) Is pulse pressure useful in predicting risk for coronary heart disease? The Framingham Heart Study. Circulation 100: 354–360.
[25]
Schafer JL (1999) Multiple imputation: a primer. Stat Methods Med Res 8: 3–15.
[26]
Itan Y, Jones BL, Ingram CJ, Swallow DM, Thomas MG (2010) A worldwide correlation of lactase persistence phenotype and genotypes. Bmc Evolutionary Biology 10: 36.
[27]
Qiao R, Huang C, Du H, Zeng G, Li L, et al. (2011) Milk consumption and lactose intolerance in adults. Biomed Environ Sci 24: 512–517.
[28]
Kipnis V, Midthune D, Freedman L, Bingham S, Day NE, et al. (2002) Bias in dietary-report instruments and its implications for nutritional epidemiology. Public Health Nutrition 5: 915–923.
[29]
Ralston RA, Lee JH, Truby H, Palermo CE, Walker KZ (2012) A systematic review and meta-analysis of elevated blood pressure and consumption of dairy foods. J Hum Hypertens 26: 3–13.
[30]
Soedamah-Muthu SS, Verberne LDM, Ding EL, Engberink MF, Geleijnse JM (2012) Dairy Consumption and Incidence of Hypertension A Dose-Response Meta-Analysis of Prospective Cohort Studies. Hypertension 60: 1131–1137.
[31]
J?k?l? P, Vapaatalo H (2010) Antihypertensive Peptides from Milk Proteins. Pharmaceuticals 3: 251–272.
[32]
Li YC, Qiao G, Uskokovic M, Xiang W, Zheng W, et al. (2004) Vitamin D: a negative endocrine regulator of the renin-angiotensin system and blood pressure. J Steroid Biochem Mol Biol 89–90: 387–392.
[33]
Zemel MB (2001) Calcium modulation of hypertension and obesity: mechanisms and implications. J Am Coll Nutr 20: 428S–435S discussion 440S–442S.
[34]
Margolis KL, Ray RM, Van Horn L, Manson JE, Allison MA, et al. (2008) Effect of calcium and vitamin D supplementation on blood pressure: the Women's Health Initiative Randomized Trial. Hypertension 52: 847–855.
[35]
Ponda MP, Dowd K, Finkielstein D, Holt PR, Breslow JL (2012) The short-term effects of vitamin d repletion on cholesterol: a randomized, placebo-controlled trial. Arterioscler Thromb Vasc Biol 32: 2510–2515.
[36]
Bolland MJ, Grey A, Avenell A, Gamble GD, Reid IR (2011) Calcium supplements with or without vitamin D and risk of cardiovascular events: reanalysis of the Women's Health Initiative limited access dataset and meta-analysis. BMJ 342: d2040.
[37]
Mozaffarian D, Wu JH (2011) Omega-3 fatty acids and cardiovascular disease: effects on risk factors, molecular pathways, and clinical events. J Am Coll Cardiol 58: 2047–2067.
[38]
Schooling CM, Leung GM (2010) A socio-biological explanation for social disparities in non-communicable chronic diseases: the product of history? J Epidemiol Community Health 64: 941–949.
[39]
Akinsete JA, Ion G, Witte TR, Hardman WE (2012) Consumption of high omega-3 fatty acid diet suppressed prostate tumorigenesis in C3(1) Tag mice. Carcinogenesis 33: 140–148.
[40]
Barzi F, Patel A, Gu D, Sritara P, Lam TH, et al. (2007) Cardiovascular risk prediction tools for populations in Asia. Journal of Epidemiology and Community Health 61: 115–121.