Cyclodextrins are widely used excipients for increasing the bioavailability of poorly water-soluble drugs. Their effect on drug absorption in the gastrointestinal tract is explained by their solubility- and permeability-enhancement. The aims of this study were to investigate penetration properties of fluorescently labeled randomly methylated-beta-cyclodextrin (FITC-RAMEB) on Caco-2 cell layer and examine the cellular entry of cyclodextrins on intestinal cells. The permeability of FITC-RAMEB through Caco-2 monolayers was very limited. Using this compound in 0.05 mM concentration the permeability coefficient was 3.35±1.29×10?8 cm/s and its permeability did not change in the presence of 5 mM randomly methylated-beta-cyclodextrin. Despite of the low permeability, cellular accumulation of FITC-RAMEB in cytoplasmic vesicles was significant and showed strong time and concentration dependence, similar to the characteristics of the macropinocytosis marker Lucifer Yellow. The internalization process was fully inhibited at 0°C and it was drastically reduced at 37°C applying rottlerin, an inhibitor of macropinocytosis. Notably, FITC-RAMEB colocalized with the early endosome organizer Rab5a. These results have revealed that FITC-RAMEB is able to enter intestinal epithelial cells by fluid-phase endocytosis from the apical side. This mechanism can be an additional process which helps to overcome the intestinal barrier and contributes to the bioavailability enhancement of cyclodextrins.
References
[1]
Szejtli J (1998) Introduction and General Overview of Cyclodextrin Chemistry. Chem Rev 98: 1743–1754.
[2]
Loftsson T, Brewster ME (1996) Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J Pharm Sci 85: 1017–1025.
[3]
Loftsson T, Jarho P, Masson M, Jarvinen T (2005) Cyclodextrins in drug delivery. Expert Opin Drug Deliv 2: 335–351.
[4]
Kilsdonk EP, Yancey PG, Stoudt GW, Bangerter FW, Johnson WJ, et al. (1995) Cellular cholesterol efflux mediated by cyclodextrins. J Biol Chem 270: 17250–17256.
[5]
Kiss T, Fenyvesi F, Bacskay I, Varadi J, Fenyvesi E, et al. (2010) Evaluation of the cytotoxicity of beta-cyclodextrin derivatives: evidence for the role of cholesterol extraction. Eur J Pharm Sci 40: 376–380.
[6]
Garrigues A, Escargueil AE, Orlowski S (2002) The multidrug transporter, P-glycoprotein, actively mediates cholesterol redistribution in the cell membrane. Proc Natl Acad Sci U S A 99: 10347–10352.
[7]
Fenyvesi F, Fenyvesi E, Szente L, Goda K, Bacso Z, et al. (2008) P-glycoprotein inhibition by membrane cholesterol modulation. European Journal of Pharmaceutical Sciences 34: 236–242.
[8]
Bacso Z, Nagy H, Goda K, Bene L, Fenyvesi F, et al. (2004) Raft and cytoskeleton associations of an ABC transporter: P-glycoprotein. Cytometry Part A 61A: 105–116.
[9]
Lambert D, O'Neill CA, Padfield PJ (2005) Depletion of Caco-2 cell cholesterol disrupts barrier function by altering the detergent solubility and distribution of specific tight-junction proteins. Biochem J 387: 553–560.
[10]
Deli MA (2009) Potential use of tight junction modulators to reversibly open membranous barriers and improve drug delivery. Biochim Biophys Acta 1788: 892–910.
[11]
Zuhorn IS, Kalicharan R, Hoekstra D (2002) Lipoplex-mediated transfection of mammalian cells occurs through the cholesterol-dependent clathrin-mediated pathway of endocytosis. J Biol Chem 277: 18021–18028.
[12]
MJ ON, Guo J, Byrne C, Darcy R, O'Driscoll CM (2011) Mechanistic studies on the uptake and intracellular trafficking of novel cyclodextrin transfection complexes by intestinal epithelial cells. Int J Pharm 413: 174–183.
[13]
Chen FW, Li C, Ioannou YA (2010) Cyclodextrin induces calcium-dependent lysosomal exocytosis. PLoS One 5: e15054.
[14]
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46: 3–26.
[15]
Matsuda H, Arima H (1999) Cyclodextrins in transdermal and rectal delivery. Adv Drug Deliv Rev 36: 81–99.
[16]
Rosenbaum AI, Zhang G, Warren JD, Maxfield FR (2010) Endocytosis of beta-cyclodextrins is responsible for cholesterol reduction in Niemann-Pick type C mutant cells. Proc Natl Acad Sci U S A 107: 5477–5482.
[17]
Wei H, Zheng W, Diakur J, Wiebe LI (2011) Confocal laser scanning microscopy (CLSM) based evidence for cell permeation by mono-4-(N-6-deoxy-6-amino-beta-cyclodext?rin)-7-nitrobenzofuran(NBD-beta-CyD). Int J Pharm 403: 15–22.
[18]
Plazzo AP, Hofer CT, Jicsinszky L, Fenyvesi E, Szente L, et al. (2012) Uptake of a fluorescent methyl-beta-cyclodextrin via clathrin-dependent endocytosis. Chem Phys Lipids 165: 505–511.
[19]
Artursson P, Palm K, Luthman K (2001) Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv Drug Deliv Rev 46: 27–43.
[20]
Rink J, Ghigo E, Kalaidzidis Y, Zerial M (2005) Rab conversion as a mechanism of progression from early to late endosomes. Cell 122: 735–749.
[21]
Szejtli J, Gerloczy A, Fonagy A (1980) Intestinal absorption of 14C-labelled beta-cyclodextrin in rats. Arzneimittelforschung 30: 808–810.
[22]
Kurkov SV, Loftsson T (2012) Cyclodextrins. Int J Pharm.
[23]
Loftsson T, Brewster ME (2011) Pharmaceutical applications of cyclodextrins: effects on drug permeation through biological membranes. J Pharm Pharmacol 63: 1119–1135.
[24]
Matilainen L, Toropainen T, Vihola H, Hirvonen J, Jarvinen T, et al. (2008) In vitro toxicity and permeation of cyclodextrins in Calu-3 cells. J Control Release 126: 10–16.
[25]
Fenyvesi F, Fenyvesi E, Szente L, Goda K, Bacso Z, et al. (2008) P-glycoprotein inhibition by membrane cholesterol modulation. Eur J Pharm Sci 34: 236–242.
[26]
Conner SD, Schmid SL (2003) Regulated portals of entry into the cell. Nature 422: 37–44.
[27]
Sarkar K, Kruhlak MJ, Erlandsen SL, Shaw S (2005) Selective inhibition by rottlerin of macropinocytosis in monocyte-derived dendritic cells. Immunology 116: 513–524.
[28]
Swanson JA, Yirinec BD, Silverstein SC (1985) Phorbol Esters and Horseradish-Peroxidase Stimulate Pinocytosis and Redirect the Flow of Pinocytosed Fluid in Macrophages. J Cell Biol 100: 851–859.
[29]
Sallusto F, Cella M, Danieli C, Lanzavecchia A (1995) Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J Exp Med 182: 389–400.
[30]
Homolya L, Hollo Z, Germann UA, Pastan I, Gottesman MM, et al. (1993) Fluorescent cellular indicators are extruded by the multidrug resistance protein. J Biol Chem 268: 21493–21496.
[31]
Hewlett LJ, Prescott AR, Watts C (1994) The coated pit and macropinocytic pathways serve distinct endosome populations. J Cell Biol 124: 689–703.
[32]
Gonzalez-Gaitano G, Rodriguez P, Isasi JR, Fuentes M, Tardajos G, et al. (2002) The aggregation of cyclodextrins as studied by photon correlation spectroscopy. J Incl Phenom Macrocycl Chem 44: 101–105.
[33]
Puskás I SM, Malanga M, Szente L (2013) Characterization and control of the aggregation behavior of cyclodextrins. J Incl Phenom Macrocycl Chem 75: 269–276.