Evolutionary Changes in Gene Expression, Coding Sequence and Copy-Number at the Cyp6g1 Locus Contribute to Resistance to Multiple Insecticides in Drosophila
Widespread use of insecticides has led to insecticide resistance in many populations of insects. In some populations, resistance has evolved to multiple pesticides. In Drosophila melanogaster, resistance to multiple classes of insecticide is due to the overexpression of a single cytochrome P450 gene, Cyp6g1. Overexpression of Cyp6g1 appears to have evolved in parallel in Drosophila simulans, a sibling species of D. melanogaster, where it is also associated with insecticide resistance. However, it is not known whether the ability of the CYP6G1 enzyme to provide resistance to multiple insecticides evolved recently in D. melanogaster or if this function is present in all Drosophila species. Here we show that duplication of the Cyp6g1 gene occurred at least four times during the evolution of different Drosophila species, and the ability of CYP6G1 to confer resistance to multiple insecticides exists in D. melanogaster and D. simulans but not in Drosophila willistoni or Drosophila virilis. In D. virilis, which has multiple copies of Cyp6g1, one copy confers resistance to DDT and another to nitenpyram, suggesting that the divergence of protein sequence between copies subsequent to the duplication affected the activity of the enzyme. All orthologs tested conferred resistance to one or more insecticides, suggesting that CYP6G1 had the capacity to provide resistance to anthropogenic chemicals before they existed. Finally, we show that expression of Cyp6g1 in the Malpighian tubules, which contributes to DDT resistance in D. melanogaster, is specific to the D. melanogaster–D. simulans lineage. Our results suggest that a combination of gene duplication, regulatory changes and protein coding changes has taken place at the Cyp6g1 locus during evolution and this locus may play a role in providing resistance to different environmental toxins in different Drosophila species.
References
[1]
Newcomb RD, Campbell PM, Ollis DL, Cheah E, Russell RJ, et al. (1997) A single amino acid substitution converts a carboxylesterase to an organophosphorus hydrolase and confers insecticide resistance on a blowfly. Proceedings of the National Academy of Sciences 94: 7464–7468.
Low WY, Ng HL, Morton CJ, Parker MW, Batterham P, et al. (2007) Molecular evolution of glutathione S-transferases in the genus Drosophila. Genetics 177: 1363–1375 doi:10.1534/genetics.107.075838.
[4]
Field LM, Devonshire AL, Forde BG (1988) Molecular evidence that insecticide resistance in peach-potato aphids (Myzus persicae Sulz.) results from amplification of an esterase gene. Biochem J 251: 309–312.
[5]
Mouchès C, Pasteur N, Bergé JB, Hyrien O, Raymond M, et al. (1986) Amplification of an esterase gene is responsible for insecticide resistance in a California Culex mosquito. Science 233: 778–780.
[6]
Müller P, Warr E, Stevenson BJ, Pignatelli PM, Morgan JC, et al. (2008) Field-caught permethrin-resistant Anopheles gambiae overexpress CYP6P3, a P450 that metabolises pyrethroids. PLoS Genet 4: e1000286 doi:10.1371/journal.pgen.1000286.
[7]
Zhu F, Parthasarathy R, Bai H, Woithe K, Kaussmann M, et al. (2010) A brain-specific cytochrome P450 responsible for the majority of deltamethrin resistance in the QTC279 strain of Tribolium castaneum. Proceedings of the National Academy of Sciences 107: 8557–8562 doi:10.1073/pnas.1000059107.
[8]
Puinean AM, Foster SP, Oliphant L, Denholm I, Field LM, et al. (2010) Amplification of a cytochrome P450 gene is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae. PLoS Genet 6: e1000999 doi:10.1371/journal.pgen.1000999.
[9]
Daborn PJ, Boundy S, Yen J, Pittendrigh BR, ffrench-Constant RH (2001) DDT resistance in Drosophila correlates with Cyp6g1 over-expression and confers cross-resistance to the neonicotinoid imidacloprid. Mol Genet Genomics 266: 556–563 doi:10.1007/s004380100531.
[10]
Daborn PJ, Yen J, Bogwitz MR, Le Goff G, Feil E, et al. (2002) A single p450 allele associated with insecticide resistance in Drosophila. Science 297: 2253–2256 doi:10.1126/science.1074170.
[11]
Chung H, Bogwitz MR, McCart C, Andrianopoulos A, ffrench-Constant RH, et al. (2007) Cis-regulatory elements in the Accord retrotransposon result in tissue-specific expression of the Drosophila melanogaster insecticide resistance gene Cyp6g1. Genetics 175: 1071–1077 doi:10.1534/genetics.106.066597.
[12]
Schmidt JM, Good RT, Appleton B, Sherrard J, Raymant GC, et al. (2010) Copy number variation and transposable elements feature in recent, ongoing adaptation at the Cyp6g1 locus. PLoS Genet 6: e1000998 doi:10.1371/journal.pgen.1000998.
[13]
Schlenke T, Begun D (2004) Strong selective sweep associated with a transposon insertion in Drosophila simulans. Proceedings of the National Academy of Sciences 101: 1626–1631 doi:10.1073/pnas.0303793101.
[14]
Willoughby L, Chung H, Lumb C, Robin C, Batterham P, et al. (2006) A comparison of Drosophila melanogaster detoxification gene induction responses for six insecticides, caffeine and phenobarbital. Insect Biochemistry and Molecular Biology 36: 934–942 doi:10.1016/j.ibmb.2006.09.004.
[15]
Daborn PJ, Lumb C, Boey A, Wong W, ffrench-Constant RH, et al. (2007) Evaluating the insecticide resistance potential of eight Drosophila melanogaster cytochrome P450 genes by transgenic over-expression. Insect Biochemistry and Molecular Biology 37: 512–519 doi:10.1016/j.ibmb.2007.02.008.
[16]
Russo CA, Takezaki N, Nei M (1995) Molecular phylogeny and divergence times of Drosophilid species. Molecular Biology and Evolution 12: 391–404.
[17]
Chung H, Sztal T, Pasricha S, Sridhar M, Batterham P, et al. (2009) Characterization of Drosophila melanogaster cytochrome P450 genes. Proceedings of the National Academy of Sciences 106: 5731–5736 doi:10.1073/pnas.0812141106.
[18]
Thomas JH (2007) Rapid birth-death evolution specific to xenobiotic cytochrome P450 genes in vertebrates. PLoS Genet 3: 720–728 doi:10.1371/journal.pgen.0030067.
[19]
Clark AG, Eisen MB, Smith DR, Bergman CM, Oliver B, et al. (2007) Evolution of genes and genomes on the Drosophila phylogeny. Nature 450: 203–218 doi:10.1038/nature06341.
[20]
Marygold SJ, Leyland PC, Seal RL, Goodman JL, Thurmond J, et al. (2013) FlyBase: improvements to the bibliography. Nucleic Acids Research 41: D751–D757 doi:10.1093/nar/gks1024.
[21]
Stark A, Lin MF, Kheradpour P, Pedersen JS, Parts L, et al. (2007) Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures. Nature 450: 219–232 doi:10.1038/nature06340.
[22]
Jou?en N, Heckel DG, Haas M, Schuphan I, Schmidt B (2008) Metabolism of imidacloprid and DDT by P450 GYP6G1 expressed in cell cultures of Nicotiana tabacum suggests detoxification of these insecticides in Cyp6g1-overexpressing strains of Drosophila melanogaster, leading to resistance. Pest Management Science 64: 65–73 doi:10.1002/ps.1472.
[23]
Bischof J, Maeda RK, Hediger M, Karch F, Basler K (2007) An optimized transgenesis system for Drosophila using germ-line-specific φC31 integrases. Proceedings of the National Academy of Sciences 104: 3312–3317 doi:10.1073/pnas.0611511104.
[24]
Daborn PJ, Lumb C, Harrop TWR, Blasetti A, Pasricha S, et al. (2012) Using Drosophila melanogaster to validate metabolism-based insecticide resistance from insect pests. Insect Biochemistry and Molecular Biology 42: 918–924 doi:10.1016/j.ibmb.2012.09.003.
[25]
Chung H, Boey A, Lumb C, Willoughby L, Batterham P, et al. (2011) Induction of a detoxification gene in Drosophila melanogaster requires an interaction between tissue specific enhancers and a novel cis-regulatory element. Insect Biochemistry and Molecular Biology 41: 863–871 doi:10.1016/j.ibmb.2011.07.002.
[26]
Yang J, McCart C, Woods DJ, Terhzaz S, Greenwood KG, et al. (2007) A Drosophila systems approach to xenobiotic metabolism. Physiol Genomics 30: 223–231 doi:10.1152/physiolgenomics.00018.2007.
[27]
Li X, Zangerl AR, Schuler MA, Berenbaum MR (2000) Cross-resistance to alpha-cypermethrin after xanthotoxin ingestion in Helicoverpa zea (Lepidoptera: Noctuidae). J Econ Entomol 93: 18–25.
[28]
Zeng RS, Wen Z, Niu G, Schuler MA, Berenbaum MR (2007) Allelochemical induction of cytochrome P450 monooxygenases and amelioration of xenobiotic toxicity in Helicoverpa zea. J Chem Ecol 33: 449–461 doi:10.1007/s10886-006-9238-1.
[29]
Jones RT, Bakker SE, Stone D, Shuttleworth SN, Boundy S, et al. (2010) Homology modelling of Drosophila cytochrome P450 enzymes associated with insecticide resistance. Pest Management Science 66: 1106–1115 doi:10.1002/ps.1986.
[30]
Feyereisen R (2012) Insect CYP Genes and P450 Enzymes. In: Gilbert LI, editor. Insect Molecular Biology and Biochemistry. Amsterdam: Elsevier B.V. pp. 236–316. doi:10.1016/B978-0-12-384747-8.10008-X.
[31]
Kirischian N, McArthur AG, Jesuthasan C, Krattenmacher B, Wilson JY (2011) Phylogenetic and functional analysis of the vertebrate cytochrome P450 2 family. J Mol Evol 72: 56–71 doi:10.1007/s00239-010-9402-7.
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948 doi:10.1093/bioinformatics/btm404.
[34]
Sakuma M (1998) Probit analysis of preference data. Appl Entomol Zool 33: 339–347.
[35]
Robertson JL, Savin NE, Preisler HK, Russell RM (2007) Bioassays with Arthropods. 2nd ed. CRC Press.
[36]
Werck-Reichhart D, Feyereisen R (2000) Cytochromes P450: a success story. Genome Biology 1: REVIEWS3003 doi:10.1186/gb-2000-1-6-reviews3003.