全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Pandemic Influenza Virus 2009 H1N1 and Adenovirus in a High Risk Population of Young Adults: Epidemiology, Comparison of Clinical Presentations, and Coinfection

DOI: 10.1371/journal.pone.0085094

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background In 2009, pandemic H1N1 influenza virus (2009 H1N1) emerged worldwide, causing morbidity and mortality that disproportionately affected young adults. Upper respiratory infection (URI), largely due to adenovirus, is an endemic cause of morbidity in military training. Whether clinical presentations differ or excess morbidity results from coinfection is unclear. Methods The Center for Advanced Molecular Detection evaluates epidemiology and rapid diagnostics of respiratory pathogens in trainees with URI. From May 1, 2009, to November 30, 2009, demographic, clinical, and PCR data from throat and nasal specimens for adenovirus and 2009 H1N1 were prospectively collected. Results 375 trainees with URI enrolled and were tested for both adenovirus and 2009 H1N1 by PCR (median age 20; 89% male). Adenovirus PCR was positive in 72% (96% serotype E-4) and 2009 H1N1 in 20%. Males were more likely to have adenovirus and females more likely to have 2009 H1N1 (p = 0.047). Subjects with 2009 H1N1 presented an average of 1 week earlier in training, had shorter illness duration before enrollment, less sore throat, diarrhea, and fewer abnormal findings on throat exam. Coryza and cough were more common with 2009 H1N1 compared to adenovirus. Subjects with 2009 H1N1 were less likely to have adenovirus than those without, despite persistently high frequencies of adenovirus detections during peak 2009 H1N1 weeks (15% vs. 83%, p < 0.01). Coinfection with adenovirus and 2009 H1N1 was rare (4%). Rates of hospitalization and pneumonia did not differ between the adenovirus, 2009 H1N1, or coinfected groups. Conclusion Military trainees with 2009 H1N1 vs. adenovirus have differing clinical presentations, and males are more likely to have adenovirus. Despite high frequencies of adenovirus infection, coinfection with adenovirus and 2009 H1N1 is rare and apparently does not result in increased morbidity.

References

[1]  Fendrick AM, Monto AS, Nightengale B, Sarnes M (2003) The economic burden of non-influenza-related viral respiratory tract infection in the United States. Arch Intern Med 163: 487–494.
[2]  Butler D (2010) Portrait of a year-old pandemic. Nature 464: 1112–1113.
[3]  Viboud C, Miller M, Olson D, Osterholm M, Simonsen L (2010) Preliminary Estimates of Mortality and Years of Life Lost Associated with the 2009 A/H1N1 Pandemic in the US and Comparison with Past Influenza Seasons. PLoS Curr 2: RRN1153.
[4]  Gray GC, Goswami PR, Malasig MD, Hawksworth AW, Trump DH, et al. (2000) Adult adenovirus infections: loss of orphaned vaccines precipitates military respiratory disease epidemics. For the Adenovirus Surveillance Group. Clin Infect Dis 31: 663–670.
[5]  Dudding BA, Top FH Jr, Winter PE, Buescher EL, Lamson TH, et al. (1973) Acute respiratory disease in military trainees: the adenovirus surveillance program, 1966–1971. Am J Epidemiol 97: 187–198.
[6]  Gray GC, McCarthy T, Lebeck MG, Schnurr DP, Russell KL, et al. (2007) Genotype prevalence and risk factors for severe clinical adenovirus infection, United States 2004–2006. Clin Infect Dis 45: 1120–1131.
[7]  Potter RN, Cantrell JA, Mallak CT, Gaydos JC (2012) Adenovirus-associated deaths in US military during postvaccination period, 1999–2010. Emerg Infect Dis 18: 507–509.
[8]  Russell KL, Broderick MP, Franklin SE, Blyn LB, Freed NE, et al. (2006) Transmission dynamics and prospective environmental sampling of adenovirus in a military recruit setting. J Infect Dis 194: 877–885.
[9]  Gray GC, Callahan JD, Hawksworth AW, Fisher CA, Gaydos JC (1999) Respiratory diseases among U.S. military personnel: countering emerging threats. Emerg Infect Dis 5: 379–385.
[10]  Rowles DM, Walter EA, Dolan DM, Canas LC, Meier PA (2000) Influenza A in a basic training population: implications for directly observed therapy. Mil Med 165: 941–943.
[11]  (2009) CDC: 38 million doses of H1N1 vaccine available. November 6, 2009. Available at http://www.flu.gov/news/blogs/vaccine38m?illion.html. Accessed 26 April 2011.
[12]  Greer RM, McErlean P, Arden KE, Faux CE, Nitsche A, et al. (2009) Do rhinoviruses reduce the probability of viral co-detection during acute respiratory tract infections? J Clin Virol 45: 10–15.
[13]  Coiras MT, Perez-Brena P, Garcia ML, Casas I (2003) Simultaneous detection of influenza A, B, and C viruses, respiratory syncytial virus, and adenoviruses in clinical samples by multiplex reverse transcription nested-PCR assay. J Med Virol 69: 132–144.
[14]  Paranhos-Baccala G, Komurian-Pradel F, Richard N, Vernet G, Lina B, et al. (2008) Mixed respiratory virus infections. J Clin Virol 43: 407–410.
[15]  Kistler A, Avila PC, Rouskin S, Wang D, Ward T, et al. (2007) Pan-viral screening of respiratory tract infections in adults with and without asthma reveals unexpected human coronavirus and human rhinovirus diversity. J Infect Dis 196: 817–825.
[16]  Esper FP, Spahlinger T, Zhou L (2011) Rate and influence of respiratory virus co-infection on pandemic (H1N1) influenza disease. J Infect 63: 260–266.
[17]  Schnepf N, Resche-Rigon M, Chaillon A, Scemla A, Gras G, et al. (2011) High burden of non-influenza viruses in influenza-like illness in the early weeks of H1N1v epidemic in France. PLoS One 6: e23514.
[18]  (2009) CDC Protocol of realtime RTPCR for influenza A (H1N1) (World Health Organization Collaboration Center for influenza at the Centers for Disease Control and Prevention, Atlanta, BA, USA). Available at http://www.who.int/csr/resources/publica?tions/swineflu/CDCrealtimeRTPCRprotocol_?20090428.pdf. Accessed 12 August 2011.
[19]  Heim A, Ebnet C, Harste G, Pring-Akerblom P (2003) Rapid and quantitative detection of human adenovirus DNA by real-time PCR. J Med Virol 70: 228–239.
[20]  Metzgar D, Skochko G, Gibbins C, Hudson N, Lott L, et al. (2009) Evaluation and validation of a real-time PCR assay for detection and quantitation of human adenovirus 14 from clinical samples. PLoS One 4: e7081.
[21]  Camargo C, Guatura SB, Bellei N (2012) Respiratory viral coinfection among hospitalized patients with H1N1 2009 during the first pandemic wave in Brazil. Braz J Infect Dis 16: 180–183.
[22]  Tanner H, Boxall E, Osman H (2012) Respiratory viral infections during the 2009–2010 winter season in Central England, UK: incidence and patterns of multiple virus co-infections. Eur J Clin Microbiol Infect Dis 31: 3001–3006.
[23]  Pretorius MA, Madhi SA, Cohen C, Naidoo D, Groome M, et al. (2012) Respiratory viral coinfections identified by a 10-plex real-time reverse-transcription polymerase chain reaction assay in patients hospitalized with severe acute respiratory illness—South Africa, 2009–2010. J Infect Dis 206 Suppl 1S159–165.
[24]  Tate JE, Bunning ML, Lott L, Lu X, Su J, et al. (2009) Outbreak of severe respiratory disease associated with emergent human adenovirus serotype 14 at a US air force training facility in 2007. J Infect Dis 199: 1419–1426.
[25]  Sanchez JL, Binn LN, Innis BL, Reynolds RD, Lee T, et al. (2001) Epidemic of adenovirus-induced respiratory illness among US military recruits: epidemiologic and immunologic risk factors in healthy, young adults. J Med Virol 65: 710–718.
[26]  Self-reported influenza-like illness during the 2009 H1N1 influenza pandemic—United States, September 2009 - March 2010. MMWR Morb Mortal Wkly Rep 60: 37–41.
[27]  (2011) Febrile Respiratory Illness (FRI) Surveillance Update, Department of Respiratory Diseases Research, Naval Health Research Center, San Diego, CA. Available at http://www.med.navy.mil/sites/nhrc/geis/?Documents/FRIUpdate.pdf. Accessed 12 March 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133