Nitrite was recognized as a potent vasodilator >130 years and has more recently emerged as an endogenous signaling molecule and modulator of gene expression. Understanding the molecular mechanisms that regulate nitrite metabolism is essential for its use as a potential diagnostic marker as well as therapeutic agent for cardiovascular diseases. In this study, we have identified human cystathionine ?-synthase (CBS) as a new player in nitrite reduction with implications for the nitrite-dependent control of H2S production. This novel activity of CBS exploits the catalytic property of its unusual heme cofactor to reduce nitrite and generate NO. Evidence for the possible physiological relevance of this reaction is provided by the formation of ferrous-nitrosyl (FeII-NO) CBS in the presence of NADPH, the human diflavin methionine synthase reductase (MSR) and nitrite. Formation of FeII-NO CBS via its nitrite reductase activity inhibits CBS, providing an avenue for regulating biogenesis of H2S and cysteine, the limiting reagent for synthesis of glutathione, a major antioxidant. Our results also suggest a possible role for CBS in intracellular NO biogenesis particularly under hypoxic conditions. The participation of a regulatory heme cofactor in CBS in nitrite reduction is unexpected and expands the repertoire of proteins that can liberate NO from the intracellular nitrite pool. Our results reveal a potential molecular mechanism for cross-talk between nitrite, NO and H2S biology.
References
[1]
Ignarro LJ (2000) Nitric Oxide: Biology and Pathobiology. San Diego: Academic Press.
[2]
Moncada S, Higgs A (1993) The L-arginine-nitric oxide pathway. N Engl J Med 329: 2002–2012.
[3]
Benarroch EE (2011) Nitric oxide: A pleiotropic signal in the nervous system. Neurology 77: 1568–1576.
[4]
Pryor WA, Houk KN, Foote CS, Fukuto JM, Ignarro LJ, et al. (2006) Free radical biology and medicine: it’s a gas, man! Am J Physiol Regul Integr Comp Physiol. 291: R491–511.
[5]
Cosby K, Partovi KS, Crawford JH, Patel RP, Reiter CD, et al. (2003) Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat Med 9: 1498–1505.
[6]
Lundberg JO, Weitzberg E, Gladwin MT (2008) The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov 7: 156–167.
[7]
Benjamin N, O’Driscoll F, Dougall H, Duncan C, Smith L, et al. (1994) Stomach NO synthesis. Nature 368: 502.
[8]
Zweier JL, Wang P, Samouilov A, Kuppusamy P (1995) Enzyme-independent formation of nitric oxide in biological tissues. Nat Med 1: 804–809.
[9]
Shiva S, Huang Z, Grubina R, Sun J, Ringwood LA, et al. (2007) Deoxymyoglobin is a nitrite reductase that generates nitric oxide and regulates mitochondrial respiration. Circ Res 100: 654–661.
[10]
Tiso M, Tejero J, Basu S, Azarov I, Wang X, et al. (2011) Human neuroglobin functions as a redox-regulated nitrite reductase. J Biol Chem 286: 18277–18289.
[11]
Basu S, Azarova NA, Font MD, King SB, Hogg N, et al. (2008) Nitrite reductase activity of cytochrome c. J Biol Chem 283: 32590–32597.
[12]
Li H, Hemann C, Abdelghany TM, El-Mahdy MA, Zweier JL (2012) Characterization of the mechanism and magnitude of cytoglobin-mediated nitrite reduction and nitric oxide generation under anaerobic conditions. J Biol Chem 287: 36623–36633.
[13]
Hon YY, Sun H, Dejam A, Gladwin MT (2010) Characterization of erythrocytic uptake and release and disposition pathways of nitrite, nitrate, methemoglobin, and iron-nitrosyl hemoglobin in the human circulation. Drug Metab Dispos 38: 1707–1713.
[14]
Vega-Villa K, Pluta R, Lonser R, Woo S (2013) Quantitative Systems Pharmacology Model of NO Metabolome and Methemoglobin Following Long-Term Infusion of Sodium Nitrite in Humans. CPT Pharmacometrics Syst Pharmacol 2: e60.
[15]
Banerjee R, Evande R, Kabil O, Ojha S, Taoka S (2003) Reaction mechanism and regulation of cystathionine beta-synthase. Biochim Biophys Acta 1647: 30–35.
[16]
Miles EW, Kraus JP (2004) Cystathionine beta-synthase: Structure, Function, Regulation, and Location of Homocystinuria-causing Mutations. J Biol Chem 279: 29871–29874.
[17]
Kery V, Bukovska G, Kraus JP (1994) Transsulfuration depends on heme in addition to pyridoxal 5′-phosphate. Cystathionine beta-synthase is a heme protein. J Biol Chem 269: 25283–25288.
[18]
Kraus JP, Janosik M, Kozich V, Mandell R, Shih V, et al. (1999) Cystathionine beta-synthase mutations in homocystinuria. Hum Mutat 13: 362–375.
[19]
Chen X, Jhee KH, Kruger WD (2004) Production of the neuromodulator H2S by cystathionine beta-synthase via the condensation of cysteine and homocysteine. J Biol Chem 279: 52082–52086.
[20]
Singh S, Padovani D, Leslie RA, Chiku T, Banerjee R (2009) Relative contributions of cystathionine beta-synthase and gamma-cystathionase to H2S biogenesis via alternative trans-sulfuration reactions. J Biol Chem 284: 22457–22466.
[21]
Singh S, Madzelan P, Banerjee R (2007) Properties of an unusual heme cofactor in PLP-dependent cystathionine beta-synthase. Nat Prod Rep 24: 631–639.
[22]
Taoka S, Lepore BW, Kabil O, Ojha S, Ringe D, et al. (2002) Human cystathionine beta-synthase is a heme sensor protein. Evidence that the redox sensor is heme and not the vicinal cysteines in the CXXC motif seen in the crystal structure of the truncated enzyme. Biochemistry 41: 10454–10461.
[23]
Majtan T, Singh LR, Wang L, Kruger WD, Kraus JP (2008) Active cystathionine beta-synthase can be expressed in heme-free systems in the presence of metal-substituted porphyrins or a chemical chaperone. J Biol Chem 283: 34588–34595.
[24]
Kabil O, Weeks CL, Carballal S, Gherasim C, Alvarez B, et al. (2011) Reversible Heme-Dependent Regulation of Human Cystathionine beta-Synthase by a Flavoprotein Oxidoreductase. Biochemistry 50: 8261–8263.
[25]
Taoka S, West M, Banerjee R (1999) Characterization of the Heme and Pyridoxal Phosphate Cofactors of Human Cystathionine β-Synthase Reveals Nonequivalent Active Sites. Biochemistry 38: 2738–2744.
[26]
Taoka S, Banerjee R (2001) Characterization of NO binding to human cystathionine [beta]-synthase:: Possible implications of the effects of CO and NO binding to the human enzyme. J Inorg Biochem 87: 245–251.
[27]
Singh S, Madzelan P, Stasser J, Weeks CL, Becker D, et al. (2009) Modulation of the heme electronic structure and cystathionine beta-synthase activity by second coordination sphere ligands: The role of heme ligand switching in redox regulation. J Inorg Biochem 103: 689–697.
[28]
Carballal S, Cuevasanta E, Marmisolle I, Kabil O, Gherasim C, et al. (2013) Kinetics of Reversible Reductive Carbonylation of Heme in Human Cystathionine beta-Synthase. Biochemistry 52: 4553–4562.
[29]
Kimura H (2010) Hydrogen sulfide: from brain to gut. Antioxid Redox Signal 12: 1111–1123.
[30]
Yang G, Wu L, Jiang B, Yang W, Qi J, et al. (2008) H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science 322: 587–590.
Kabil O, Banerjee R (2010) The redox biochemistry of hydrogen sulfide. J Biol Chem 285: 21903–21907.
[33]
Kabil O, Banerjee R (2013) Enzymology of HS Biogenesis, Decay and Signaling. Antioxid Redox Signal.
[34]
Chiku T, Padovani D, Zhu W, Singh S, Vitvitsky V, et al. (2009) H2S biogenesis by cystathionine gamma-lyase leads to the novel sulfur metabolites, lanthionine and homolanthionine, and is responsive to the grade of hyperhomocysteinemia. J Biol Chem 284: 11601–11612.
[35]
Stipanuk MH, Beck PW (1982) Characterization of the enzymic capacity for cysteine desulphhydration in liver and kidney of the rat. Biochem J 206: 267–277.
[36]
Shibuya N, Tanaka M, Yoshida M, Ogasawara Y, Togawa T, et al. (2009) 3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxid Redox Signal 11: 703–714.
[37]
Yadav PK, Yamada K, Chiku T, Koutmos M, Banerjee R (2013) Structure and kinetic analysis of H2S production by human mercaptopyruvate sulfurtransferase. J Biol Chem.
[38]
Vitvitsky V, Kabil O, Banerjee R (2012) High turnover rates for hydrogen sulfide allow for rapid regulation of its tissue concentrations. Antioxid Red Signal 17: 22–31.
[39]
Furne J, Saeed A, Levitt MD (2008) Whole tissue hydrogen sulfide concentrations are orders of magnitude lower than presently accepted values. Am J Physiol Regul Integr Comp Physiol 295: R1479–1485.
[40]
Szabo C (2007) Hydrogen sulphide and its therapeutic potential. Nat Rev Drug Discov 6: 917–935.
[41]
Kajimura M, Fukuda R, Bateman RM, Yamamoto T, Suematsu M (2010) Interactions of multiple gas-transducing systems: hallmarks and uncertainties of CO, NO, and H2S gas biology. Antioxid Redox Signal 13: 157–192.
[42]
Taoka S, Green EL, Loehr TM, Banerjee R (2001) Mercuric Chloride-Induced Spin or Ligation State Changes in Ferric or Ferrous Human Cystathionine beta-synthase Inhibit Enzyme Activity. J Inorg Bioc 87: 253–259.
[43]
Taoka S, Ohja S, Shan X, Kruger WD, Banerjee R (1998) Evidence for heme-mediated redox regulation of human cystathionine beta-synthase activity. J Biol Chem 273: 25179–25184.
[44]
Gherasim CG, Zaman U, Raza A, Banerjee R (2008) Impeded electron transfer from a pathogenic FMN domain mutant of methionine synthase reductase and its responsiveness to flavin supplementation. Biochemistry 47: 12515–12522.
[45]
Chiku T, Padovani D, Zhu W, Singh S, Vitvitsky V, et al. (2009) H2S biogenesis by human cystathionine gamma-lyase leads to the novel sulfur metabolites lanthionine and homolanthionine and is responsive to the grade of hyperhomocysteinemia. J Biol Chem 284: 11601–11612.
[46]
Grubina R, Basu S, Tiso M, Kim-Shapiro DB, Gladwin MT (2008) Nitrite reductase activity of hemoglobin S (sickle) provides insight into contributions of heme redox potential versus ligand affinity. J Biol Chem 283: 3628–3638.
[47]
Petersen MG, Dewilde S, Fago A (2008) Reactions of ferrous neuroglobin and cytoglobin with nitrite under anaerobic conditions. J Inorg Biochem 102: 1777–1782.
[48]
Sturms R, DiSpirito AA, Hargrove MS (2011) Plant and cyanobacterial hemoglobins reduce nitrite to nitric oxide under anoxic conditions. Biochemistry 50: 3873–3878.
[49]
Meier M, Janosik M, Kery V, Kraus JP, Burkhard P (2001) Structure of human cystathionine beta-synthase: a unique pyridoxal 5′- phosphate-dependent heme protein. EMBO J 20: 3910–3916.
[50]
Koutmos M, Kabil O, Smith JL, Banerjee R (2010) Structural basis for substrate activation and regulation by cystathionine beta-synthase domains in cystathionine beta-synthase. Proc Natl Acad Sci U S A 107: 20958–20963.
[51]
Ojha S, Wu J, LoBrutto R, Banerjee R (2002) Effects of heme ligand mutations including a pathogenic variant, H65R, on the properties of human cystathionine beta syntase. Biochemistry 41: 4649–4654.
[52]
Moore EG, Gibson QH (1976) Cooperativity in the dissociation of nitric oxide from hemoglobin. J Biol Chem 251: 2788–2794.
[53]
Yi J, Thomas LM, Richter-Addo GB (2011) Structure of human R-state aquomethemoglobin at 2.0 A resolution. Acta Crystallogr Sect F Struct Biol Cryst Commun 67: 647–651.
[54]
Taoka S, West M, Banerjee R (1999) Characterization of the heme and pyridoxal phosphate cofactors of human cystathionine beta-synthase reveals nonequivalent active sites. Biochemistry 38: 7406.
[55]
Gladwin MT, Kim-Shapiro DB (2008) The functional nitrite reductase activity of the heme-globins. Blood 112: 2636–2647.
[56]
Kabil O, Vitvitsky V, Xie P, Banerjee R (2011) The Quantitative Significance of the Transsulfuration Enzymes for H2S Production in Murine Tissues. Antioxid Redox Signal 15: 363–372.
[57]
Ishii I, Akahoshi N, Yu XN, Kobayashi Y, Namekata K, et al. (2004) Murine cystathionine gamma-lyase: complete cDNA and genomic sequences, promoter activity, tissue distribution and developmental expression. Biochem J 381: 113–123.
[58]
Fago A, Jensen FB, Tota B, Feelisch M, Olson KR, et al. (2012) Integrating nitric oxide, nitrite and hydrogen sulfide signaling in the physiological adaptations to hypoxia: A comparative approach. Comp Biochem Physiol A Mol Integr Physiol 162: 1–6.
[59]
Filipovic MR, Miljkovic J, Nauser T, Royzen M, Klos K, et al. (2012) Chemical characterization of the smallest S-nitrosothiol, HSNO; cellular cross-talk of H2S and S-nitrosothiols. J Am Chem Soc 134: 12016–12027.
[60]
Mosharov E, Cranford MR, Banerjee R (2000) The quantitatively important relationship between homocysteine metabolism and glutathione synthesis by the transsulfuration pathway and its regulation by redox changes. Biochemistry 39: 13005–13011.
[61]
Vitvitsky V, Thomas M, Ghorpade A, Gendelman HE, Banerjee R (2006) A functional transsulfuration pathway in the brain links to glutathione homeostasis. J Biol Chem 281: 35785–35793.