An elevated level of the cytokine TL1A is known to be associated with several autoimmune diseases, e.g. rheumatoid arthritis and inflammatory bowel disease. However, the mode of action of TL1A remains elusive. In this study, we investigated the role of TL1A in a pro-inflammatory setting, using human leukocytes purified from healthy donors. We show that TL1A, together with IL-12, IL-15 and IL-18, directly induces the production of IL-6 and TNF-α from leukocytes. Interestingly, TL1A-induced IL-6 was not produced by CD14+ monocytes. We further show that the produced IL-6 is fully functional, as measured by its ability to signal through the IL-6 receptor, and that the induction of IL-6 is independent of TCR stimulation. Furthermore, the transcription factor PLZF was induced in stimulated cells. These results offer a substantial explanation for the role of TL1A, since TNF-α and IL-6 are directly responsible for much of the inflammatory state in many autoimmune diseases. Our study suggests that TL1A is a possible target for the treatment of autoimmune diseases.
References
[1]
Migone TS, Zhang J, Luo X, Zhuang L, Chen C, et al.. (2002) TL1A is a TNF-like ligand for DR3 and TR6/DcR3 and functions as a T cell costimulator. Immunity 16: 479–492. S1074761302002832 [pii].
[2]
Bamias G, Siakavellas SI, Stamatelopoulos KS, Chryssochoou E, Papamichael C, et al. (2008) Circulating levels of TNF-like cytokine 1A (TL1A) and its decoy receptor 3 (DcR3) in rheumatoid arthritis. Clin Immunol 129: 249–255 S1521-6616(08)00728-6 [pii];10.1016/j.clim.2008.07.014 [doi].
[3]
Cassatella MA, Pereira-da-Silva G, Tinazzi I, Facchetti F, Scapini P, et al. (2007) Soluble TNF-like cytokine (TL1A) production by immune complexes stimulated monocytes in rheumatoid arthritis. J Immunol 178: 7325–7333. 178/11/7325 [pii].
[4]
Zhang J, Wang X, Fahmi H, Wojcik S, Fikes J, et al. (2009) Role of TL1A in the pathogenesis of rheumatoid arthritis. J Immunol 183: 5350–5357 jimmunol.0802645 [pii];10.4049/jimmunol.0802645 [doi].
[5]
Bamias G, Evangelou K, Vergou T, Tsimaratou K, Kaltsa G, et al. (2011) Upregulation and nuclear localization of TNF-like cytokine 1A (TL1A) and its receptors DR3 and DcR3 in psoriatic skin lesions. Exp Dermatol 20: 725–731 10.1111/j.1600-0625.2011.01304.x [doi].
[6]
Bamias G, Kaltsa G, Siakavellas SI, Gizis M, Margantinis G, et al. (2012) Differential expression of the TL1A/DcR3 system of TNF/TNFR-like proteins in large vs. small intestinal Crohn's disease. Dig Liver Dis 44: 30–36 S1590-8658(11)00343-4 [pii];10.1016/j.dld.2011.09.002 [doi].
[7]
Bamias G, Martin C III, Marini M, Hoang S, Mishina M, et al. (2003) Expression, localization, and functional activity of TL1A, a novel Th1-polarizing cytokine in inflammatory bowel disease. J Immunol 171: 4868–4874.
[8]
Konsta M, Bamias G, Tektonidou MG, Christopoulos P, Iliopoulos A, et al.. (2012) Increased levels of soluble TNF-like cytokine 1A in ankylosing spondylitis. Rheumatology (Oxford). kes316 [pii];10.1093/rheumatology/kes316 [doi].
[9]
Bayry J (2010) Immunology: TL1A in the inflammatory network in autoimmune diseases. Nat Rev Rheumatol 6: 67–68 nrrheum.2009.263 [pii];10.1038/nrrheum.2009.263 [doi].
[10]
Pappu BP, Borodovsky A, Zheng TS, Yang X, Wu P, et al. (2008) TL1A-DR3 interaction regulates Th17 cell function and Th17-mediated autoimmune disease. J Exp Med 205: 1049–1062 jem.20071364 [pii];10.1084/jem.20071364 [doi].
[11]
Niu Q, Cai B, Huang ZC, Shi YY, Wang LL (2011) Disturbed Th17/Treg balance in patients with rheumatoid arthritis. Rheumatol Int. 10.1007/s00296-011-1984-x [doi].
[12]
Jones GW, Stumhofer JS, Foster T, Twohig JP, Hertzog P, et al. (2011) Naive and activated T cells display differential responsiveness to TL1A that affects Th17 generation, maintenance, and proliferation. FASEB J 25: 409–419 fj.10-166843 [pii];10.1096/fj.10-166843 [doi].
[13]
Bull MJ, Williams AS, Mecklenburgh Z, Calder CJ, Twohig JP, et al. (2008) The Death Receptor 3-TNF-like protein 1A pathway drives adverse bone pathology in inflammatory arthritis. J Exp Med 205: 2457–2464 jem.20072378 [pii];10.1084/jem.20072378 [doi].
[14]
Meylan F, Davidson TS, Kahle E, Kinder M, Acharya K, et al. (2008) The TNF-family receptor DR3 is essential for diverse T cell-mediated inflammatory diseases. Immunity 29: 79–89 S1074-7613(08)00269-0 [pii];10.1016/j.immuni.2008.04.021 [doi].
[15]
Fang L, Adkins B, Deyev V, Podack ER (2008) Essential role of TNF receptor superfamily 25 (TNFRSF25) in the development of allergic lung inflammation. J Exp Med 205: 1037–1048 jem.20072528 [pii];10.1084/jem.20072528 [doi].
[16]
Twohig JP, Marsden M, Cuff SM, Ferdinand JR, Gallimore AM, et al. (2012) The death receptor 3/TL1A pathway is essential for efficient development of antiviral CD4+ and CD8+ T-cell immunity. FASEB J 26: 3575–3586 fj.11-200618 [pii];10.1096/fj.11-200618 [doi].
[17]
Buchan SL, Taraban VY, Slebioda TJ, James S, Cunningham AF, et al. (2012) Death receptor 3 is essential for generating optimal protective CD4(+) T-cell immunity against Salmonella. Eur J Immunol 42: 580–588 10.1002/eji.201041950 [doi].
[18]
Neurath MF, Finotto S (2011) IL-6 signaling in autoimmunity, chronic inflammation and inflammation-associated cancer. Cytokine Growth Factor Rev 22: 83–89 S1359-6101(11)00005-0 [pii];10.1016/j.cytogfr.2011.02.003 [doi].
[19]
Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, et al. (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441: 235–238 nature04753 [pii];10.1038/nature04753 [doi].
[20]
Emery P, Keystone E, Tony HP, Cantagrel A, van VR, et al. (2008) IL-6 receptor inhibition with tocilizumab improves treatment outcomes in patients with rheumatoid arthritis refractory to anti-tumour necrosis factor biologicals: results from a 24-week multicentre randomised placebo-controlled trial. Ann Rheum Dis 67: 1516–1523 ard.2008.092932 [pii];10.1136/ard.2008.092932 [doi].
[21]
Goodman WA, Young AB, McCormick TS, Cooper KD, Levine AD (2011) Stat3 phosphorylation mediates resistance of primary human T cells to regulatory T cell suppression. J Immunol 186: 3336–3345 jimmunol.1001455 [pii];10.4049/jimmunol.1001455 [doi].
[22]
Goodman WA, Levine AD, Massari JV, Sugiyama H, McCormick TS, et al. (2009) IL-6 signaling in psoriasis prevents immune suppression by regulatory T cells. J Immunol 183: 3170–3176 jimmunol.0803721 [pii];10.4049/jimmunol.0803721 [doi].
[23]
Papadakis KA, Prehn JL, Landers C, Han Q, Luo X, et al. (2004) TL1A synergizes with IL-12 and IL-18 to enhance IFN-gamma production in human T cells and NK cells. J Immunol 172: 7002–7007.
[24]
Papadakis KA, Zhu D, Prehn JL, Landers C, Avanesyan A, et al.. (2005) Dominant role for TL1A/DR3 pathway in IL-12 plus IL-18-induced IFN-gamma production by peripheral blood and mucosal CCR9+ T lymphocytes. J Immunol 174: 4985–4990. 174/8/4985 [pii].
[25]
Fehniger TA, Shah MH, Turner MJ, VanDeusen JB, Whitman SP, et al. (1999) Differential cytokine and chemokine gene expression by human NK cells following activation with IL-18 or IL-15 in combination with IL-12: implications for the innate immune response. J Immunol 162: 4511–4520.
[26]
Romee R, Schneider SE, Leong JW, Chase JM, Keppel CR, et al. (2012) Cytokine activation induces human memory-like NK cells. Blood 120: 4751–4760 blood-2012-04-419283 [pii];10.1182/blood-2012-04-419283 [doi].
[27]
Vujanovic L, Szymkowski DE, Alber S, Watkins SC, Vujanovic NL, et al. (2010) Virally infected and matured human dendritic cells activate natural killer cells via cooperative activity of plasma membrane-bound TNF and IL-15. Blood 116: 575–583 blood-2009-08-240325 [pii];10.1182/blood-2009-08-240325 [doi].
[28]
Harris KM (2011) Monocytes differentiated with GM-CSF and IL-15 initiate Th17 and Th1 responses that are contact-dependent and mediated by IL-15. J Leukoc Biol 90: 727–734 jlb.0311132 [pii];10.1189/jlb.0311132 [doi].
[29]
Ben AM, Belhadj HN, Moes N, Buyse S, Abdeladhim M, et al. (2009) IL-15 renders conventional lymphocytes resistant to suppressive functions of regulatory T cells through activation of the phosphatidylinositol 3-kinase pathway. J Immunol 182: 6763–6770 182/11/6763 [pii];10.4049/jimmunol.0801792 [doi].
[30]
Littman DR, Rudensky AY (2010) Th17 and regulatory T cells in mediating and restraining inflammation. Cell 140: 845–858 S0092-8674(10)00174-1 [pii];10.1016/j.cell.2010.02.021 [doi].
[31]
Rodrigues L, Nandakumar S, Bonorino C, Rouse BT, Kumaraguru U (2009) IL-21 and IL-15 cytokine DNA augments HSV specific effector and memory CD8+ T cell response. Mol Immunol 46: 1494–1504 S0161-5890(08)00808-0 [pii];10.1016/j.molimm.2008.12.033 [doi].
[32]
Skov S, Bonyhadi M, Odum N, Ledbetter JA (2000) IL-2 and IL-15 regulate CD154 expression on activated CD4 T cells. J Immunol 164: 3500–3505. ji_v164n7p3500 [pii].
[33]
Correia MP, Costa AV, Uhrberg M, Cardoso EM, Arosa FA (2011) IL-15 induces CD8+ T cells to acquire functional NK receptors capable of modulating cytotoxicity and cytokine secretion. Immunobiology 216: 604–612 S0171-2985(10)00179-8 [pii];10.1016/j.imbio.2010.09.012 [doi].
[34]
Gagnon J, Ramanathan S, Leblanc C, Cloutier A, McDonald PP, et al.. (2008) IL-6, in synergy with IL-7 or IL-15, stimulates TCR-independent proliferation and functional differentiation of CD8+ T lymphocytes. J Immunol 180: 7958–7968. 180/12/7958 [pii].
[35]
Bezbradica JS, Medzhitov R (2009) Integration of cytokine and heterologous receptor signaling pathways. Nat Immunol 10: 333–339 ni.1713 [pii];10.1038/ni.1713 [doi].
[36]
Guo L, Junttila IS, Paul WE (2012) Cytokine-induced cytokine production by conventional and innate lymphoid cells. Trends Immunol 33: 598–606 S1471-4906(12)00128-7 [pii];10.1016/j.it.2012.07.006 [doi].
[37]
Spits H, Di Santo JP (2011) The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nat Immunol 12: 21–27 ni.1962 [pii];10.1038/ni.1962 [doi].
[38]
Tough DF, Borrow P, Sprent J (1996) Induction of bystander T cell proliferation by viruses and type I interferon in vivo. Science 272: 1947–1950.
[39]
Boyman O (2010) Bystander activation of CD4+ T cells. Eur J Immunol 40: 936–939 10.1002/eji.201040466 [doi].
[40]
Kotaja N, Sassone-Corsi P (2004) Plzf pushes stem cells. Nat Genet 36: 551–553 10.1038/ng0604-551 [doi];ng0604-551 [pii].
[41]
Alonzo ES, Sant'Angelo DB (2011) Development of PLZF-expressing innate T cells. Curr Opin Immunol 23: 220–227 S0952-7915(10)00231-1 [pii];10.1016/j.coi.2010.12.016 [doi].
[42]
Quah BJ, Warren HS, Parish CR (2007) Monitoring lymphocyte proliferation in vitro and in vivo with the intracellular fluorescent dye carboxyfluorescein diacetate succinimidyl ester. Nat Protoc 2: 2049–2056 nprot.2007.296 [pii];10.1038/nprot.2007.296 [doi].
Savage AK, Constantinides MG, Han J, Picard D, Martin E, et al. (2008) The transcription factor PLZF directs the effector program of the NKT cell lineage. Immunity 29: 391–403 S1074-7613(08)00337-3 [pii];10.1016/j.immuni.2008.07.011 [doi].
[45]
Kreslavsky T, Savage AK, Hobbs R, Gounari F, Bronson R, et al. (2009) TCR-inducible PLZF transcription factor required for innate phenotype of a subset of gammadelta T cells with restricted TCR diversity. Proc Natl Acad Sci U S A 106: 12453–12458 0903895106 [pii];10.1073/pnas.0903895106 [doi].
[46]
Lee YJ, Jeon YK, Kang BH, Chung DH, Park CG, et al. (2010) Generation of PLZF+ CD4+ T cells via MHC class II-dependent thymocyte-thymocyte interaction is a physiological process in humans. J Exp Med 207: 237–246 jem.20091519 [pii];10.1084/jem.20091519 [doi].
[47]
Weinreich MA, Odumade OA, Jameson SC, Hogquist KA (2010) T cells expressing the transcription factor PLZF regulate the development of memory-like CD8+ T cells. Nat Immunol 11: 709–716 ni.1898 [pii];10.1038/ni.1898 [doi].
[48]
Kovalovsky D, Alonzo ES, Uche OU, Eidson M, Nichols KE, et al. (2010) PLZF induces the spontaneous acquisition of memory/effector functions in T cells independently of NKT cell-related signals. J Immunol 184: 6746–6755 jimmunol.1000776 [pii];10.4049/jimmunol.1000776 [doi].
[49]
van Amelsfort JM, Jacobs KM, Bijlsma JW, Lafeber FP, Taams LS (2004) CD4(+)CD25(+) regulatory T cells in rheumatoid arthritis: differences in the presence, phenotype, and function between peripheral blood and synovial fluid. Arthritis Rheum 50: 2775–2785 10.1002/art.20499 [doi].
[50]
Buckner JH (2010) Mechanisms of impaired regulation by CD4(+)CD25(+)FOXP3(+) regulatory T cells in human autoimmune diseases. Nat Rev Immunol 10: 849–859 nri2889 [pii];10.1038/nri2889 [doi].
[51]
Jones SA, Horiuchi S, Topley N, Yamamoto N, Fuller GM (2001) The soluble interleukin 6 receptor: mechanisms of production and implications in disease. FASEB J 15: 43–58 10.1096/fj.99-1003rev [doi];15/1/43 [pii].
[52]
Rose-John S, Waetzig GH, Scheller J, Grotzinger J, Seegert D (2007) The IL-6/sIL-6R complex as a novel target for therapeutic approaches. Expert Opin Ther Targets 11: 613–624 10.1517/14728222.11.5.613 [doi].
[53]
Assier E, Boissier MC, Dayer JM (2010) Interleukin-6: from identification of the cytokine to development of targeted treatments. Joint Bone Spine 77: 532–536 S1297-319X(10)00198-3 [pii];10.1016/j.jbspin.2010.07.007 [doi].
[54]
Schiff MH, Burmester GR, Kent JD, Pangan AL, Kupper H, et al. (2006) Safety analyses of adalimumab (HUMIRA) in global clinical trials and US postmarketing surveillance of patients with rheumatoid arthritis. Ann Rheum Dis 65: 889–894 ard.2005.043166 [pii];10.1136/ard.2005.043166 [doi].
[55]
Fleming JO (2013) Helminth therapy and multiple sclerosis. Int J Parasitol 43: 259–274 S0020-7519(12)00315-3 [pii];10.1016/j.ijpara.2012.10.025 [doi].
[56]
Itsumi M, Yoshikai Y, Yamada H (2009) IL-15 is critical for the maintenance and innate functions of self-specific CD8(+) T cells. Eur J Immunol 39: 1784–1793 10.1002/eji.200839106 [doi].
[57]
Niedbala W, Wei X, Liew FY (2002) IL-15 induces type 1 and type 2 CD4+ and CD8+ T cells proliferation but is unable to drive cytokine production in the absence of TCR activation or IL-12/IL-4 stimulation in vitro. Eur J Immunol 32: 341–347 10.1002/1521-4141(200202)32:2<341::AID-I?MMU341>3.0.CO;2-X[pii];10.1002/1521-4141(200202)32:2<?341::AID-IMMU341>3.0.CO;2-X[doi].
[58]
Fehniger TA, Suzuki K, Ponnappan A, VanDeusen JB, Cooper MA, et al. (2001) Fatal leukemia in interleukin 15 transgenic mice follows early expansions in natural killer and memory phenotype CD8+ T cells. J Exp Med 193: 219–231.