全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Targeting a Cross-Reactive Gly m 5 Soy Peptide as Responsible for Hypersensitivity Reactions in a Milk Allergy Mouse Model

DOI: 10.1371/journal.pone.0082341

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Cross-reactivity between soybean allergens and bovine caseins has been previously reported. In this study we aimed to map epitopes of the major soybean allergen Gly m 5 that are co-recognized by casein specific antibodies, and to identify a peptide responsible for the cross-reactivity. Methods Cow's milk protein (CMP)-specific antibodies were used in different immunoassays (immunoblotting, ELISA, ELISA inhibition test) to evaluate the in vitro recognition of soybean proteins (SP). Recombinant Gly m 5 (α), a truncated fragment containing the C-terminal domain (α-T) and peptides of α-T were obtained and epitope mapping was performed with an overlapping peptide assay. Bioinformatics tools were used for epitope prediction by sequence alignment, and for modelling the cross-recognized soy proteins and peptides. The binding of SP to a monoclonal antibody was studied by surface Plasmon resonance (SPR). Finally, the in vivo cross-recognition of SP was assessed in a mouse model of milk allergy. Results Both α and α-T reacted with the different CMP-specific antibodies. α-T contains IgG and IgE epitopes in several peptides, particularly in the peptide named PA. Besides, we found similar values of association and dissociation constants between the α-casein specific mAb and the different milk and soy components. The food allergy mouse model showed that SP and PA contain the cross-reactive B and T epitopes, which triggered hypersensitivity reactions and a Th2-mediated response on CMP-sensitized mice. Conclusions Gly m 5 is a cross-reactive soy allergen and the α-T portion of the molecule contains IgG and IgE immunodominant epitopes, confined to PA, a region with enough conformation to be bound by antibodies. These findings contribute to explain the intolerance to SP observed in IgE-mediated CMA patients, primarily not sensitised to SP, as well as it sets the basis to propose a mucosal immunotherapy for milk allergy using this soy peptide.

References

[1]  Rona RJ, Keil T, Summers C, Gislason D, Zuidmeer L, et al. (2007) The prevalence of food allergy: a meta-analysis. J Allergy Clin Immunol 120: 638–646 doi:10.1016/j.jaci.2007.05.026.
[2]  Sicherer SH (2011) Food allergy. Mt Sinai J Med New York 78: 683–696 doi:10.1002/msj.20292.
[3]  Fiocchi A, Brozek J, Schünemann H, Bahna SL, von Berg A, et al. (2010) World Allergy Organization (WAO) Diagnosis and Rationale for Action against Cow's Milk Allergy (DRACMA) Guidelines. World Allergy Organ J 3: 57–161 doi:10.1097/WOX.0b013e3181defeb9.
[4]  Koletzko S, Niggemann B, Arato A, Dias JA, Heuschkel R, et al. (2012) Diagnostic approach and management of cow's-milk protein allergy in infants and children: ESPGHAN GI Committee practical guidelines. J Pediatr Gastroenterol Nutr 55: 221–229 doi:10.1097/MPG.0b013e31825c9482.
[5]  Dupont C (2011) Food allergy: recent advances in pathophysiology and diagnosis. Ann Nutr Metab 59 Suppl 1: 8–18 doi:10.1159/000334145.
[6]  Bhatia J, Greer F (2008) Use of soy protein-based formulas in infant feeding. Pediatrics 121: 1062–1068 doi:10.1542/peds.2008-0564.
[7]  COOK CD (1960) Probable gastrointestinal reaction to soybean. N Engl J Med 263: 1076–1077 doi:10.1056/NEJM196011242632109.
[8]  Agostoni C, Axelsson I, Goulet O, Koletzko B, Michaelsen KF, et al. (2006) Soy protein infant formulae and follow-on formulae: a commentary by the ESPGHAN Committee on Nutrition. J Pediatr Gastroenterol Nutr 42: 352–361 doi:10.1097/01.mpg.0000189358.38427.cd.
[9]  Zeiger RS, Sampson HA, Bock SA, Burks AW Jr, Harden K, et al. (1999) Soy allergy in infants and children with IgE-associated cow's milk allergy. J Pediatr 134: 614–622.
[10]  Klemola T, Vanto T, Juntunen-Backman K, Kalimo K, Korpela R, et al. (2002) Allergy to soy formula and to extensively hydrolyzed whey formula in infants with cow's milk allergy: a prospective, randomized study with a follow-up to the age of 2 years. J Pediatr 140: 219–224 doi:10.1067/mpd.2002.121935.
[11]  Docena GH, Fernandez R, Chirdo FG, Fossati CA (1996) Identification of casein as the major allergenic and antigenic protein of cow's milk. Allergy 51: 412–416.
[12]  Docena G, Rozenfeld P, Fernández R, Fossati CA (2002) Evaluation of the residual antigenicity and allergenicity of cow's milk substitutes by in vitro tests. Allergy 57: 83–91.
[13]  Rozenfeld P, Docena GH, A?ón MC, Fossati CA (2002) Detection and identification of a soy protein component that cross-reacts with caseins from cow's milk. Clin Exp Immunol 130: 49–58.
[14]  Curciarello R, Lareu JF, Fossati CA, Docena GH, Petruccelli S (2008) Immunochemical characterization of Glycine max L. Merr. var Raiden, as a possible hypoallergenic substitute for cow's milk-allergic patients. Clin Exp Allergy J Br Soc Allergy Clin Immunol 38: 1559–1565 doi:10.1111/j.1365-2222.2008.03062.x.
[15]  Smaldini P, Curciarello R, Candreva A, Rey MA, Fossati CA, et al. (2012) In vivo evidence of cross-reactivity between cow's milk and soybean proteins in a mouse model of food allergy. Int Arch Allergy Immunol 158: 335–346 doi:10.1159/000333562.
[16]  Ogawa T, Bando N, Tsuji H, Nishikawa K, Kitamura K (1995) Alpha-subunit of beta-conglycinin, an allergenic protein recognized by IgE antibodies of soybean-sensitive patients with atopic dermatitis. Biosci Biotechnol Biochem 59: 831–833.
[17]  Ballmer-Weber BK, Holzhauser T, Scibilia J, Mittag D, Zisa G, et al. (2007) Clinical characteristics of soybean allergy in Europe: a double-blind, placebo-controlled food challenge study. J Allergy Clin Immunol 119: 1489–1496 doi:10.1016/j.jaci.2007.01.049.
[18]  Krishnan HB, Kim W-S, Jang S, Kerley MS (2009) All three subunits of soybean beta-conglycinin are potential food allergens. J Agric Food Chem 57: 938–943 doi:10.1021/jf802451g.
[19]  Codina R, Ardusso L, Lockey RF, Crisci CD, Jaén C, et al. (2002) Identification of the soybean hull allergens involved in sensitization to soybean dust in a rural population from Argentina and N-terminal sequence of a major 50 KD allergen. Clin Exp Allergy J Br Soc Allergy Clin Immunol 32: 1059–1063.
[20]  Holzhauser T, Wackermann O, Ballmer-Weber BK, Bindslev-Jensen C, Scibilia J, et al. (2009) Soybean (Glycine max) allergy in Europe: Gly m 5 (beta-conglycinin) and Gly m 6 (glycinin) are potential diagnostic markers for severe allergic reactions to soy. J Allergy Clin Immunol 123: 452–458 doi:10.1016/j.jaci.2008.09.034.
[21]  Ogawa A, Samoto M, Takahashi K (2000) Soybean allergens and hypoallergenic soybean products. J Nutr Sci Vitaminol (Tokyo) 46: 271–279.
[22]  Petrucelli S, Chirdo FG, A?ón MC (n.d.) Immunochemical reactivity of soybean b-conglycinin subunits. Food Agric Immunol 16: 17–28.
[23]  Mills EN, Jenkins J, Marigheto N, Belton PS, Gunning AP, et al. (2002) Allergens of the cupin superfamily. Biochem Soc Trans 30: 925–929 doi:10.1042/.
[24]  Nallamsetty S, Austin BP, Penrose KJ, Waugh DS (2005) Gateway vectors for the production of combinatorially-tagged His6-MBP fusion proteins in the cytoplasm and periplasm of Escherichia coli. Protein Sci Publ Protein Soc 14: 2964–2971 doi:10.1110/ps.051718605.
[25]  Peters B, Sidney J, Bourne P, Bui H-H, Buus S, et al. (2005) The immune epitope database and analysis resource: from vision to blueprint. PLoS Biol 3: e91 doi:10.1371/journal.pbio.0030091.
[26]  Chou PY, Fasman GD (1978) Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol 47: 45–148.
[27]  Emini EA, Hughes JV, Perlow DS, Boger J (1985) Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. J Virol 55: 836–839.
[28]  Karplus PA, Schulz GE (1985) Prediction of chain flexibility in proteins. Naturwissenschaften 72: 212–213.
[29]  Kolaskar AS, Tongaonkar PC (1990) A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett 276: 172–174.
[30]  Parker JM, Guo D, Hodges RS (1986) New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. Biochemistry (Mosc) 25: 5425–5432.
[31]  Altschul SF, Madden TL, Sch?ffer AA, Zhang J, Zhang Z, et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402.
[32]  Marti-Renom MA, Madhusudhan MS, Fiser A, Rost B, Sali A (2002) Reliability of assessment of protein structure prediction methods. Struct Lond Engl 1993 10: 435–440.
[33]  Jaroszewski L, Rychlewski L, Li Z, Li W, Godzik A (2005) FFAS03: a server for profile–profile sequence alignments. Nucleic Acids Res 33: W284–288 doi:10.1093/nar/gki418.
[34]  Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35: W407–410 doi:10.1093/nar/gkm290.
[35]  Jo S, Vargyas M, Vasko-Szedlar J, Roux B, Im W (2008) PBEQ-Solver for online visualization of electrostatic potential of biomolecules. Nucleic Acids Res 36: W270–275 doi:10.1093/nar/gkn314.
[36]  Combet C, Blanchet C, Geourjon C, Deléage G (2000) NPS@: network protein sequence analysis. Trends Biochem Sci 25: 147–150.
[37]  Chou PY, Fasman GD (1974) Prediction of protein conformation. Biochemistry (Mosc) 13: 222–245.
[38]  Cole C, Barber JD, Barton GJ (2008) The Jpred 3 secondary structure prediction server. Nucleic Acids Res 36: W197–201 doi:10.1093/nar/gkn238.
[39]  Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292: 195–202 doi:10.1006/jmbi.1999.3091.
[40]  Ceska M (1981) Radioimmunoassay of IgE using paper disks. Methods Enzymol 73: 646–656.
[41]  Handlogten MW, Kiziltepe T, Alves NJ, Bilgicer B (2012) Synthetic allergen design reveals the significance of moderate affinity epitopes in mast cell degranulation. ACS Chem Biol 7: 1796–1801 doi:10.1021/cb300193f.
[42]  Chatchatee P, J?rvinen KM, Bardina L, Vila L, Beyer K, et al. (2001) Identification of IgE and IgG binding epitopes on beta- and kappa-casein in cow's milk allergic patients. Clin Exp Allergy J Br Soc Allergy Clin Immunol 31: 1256–1262.
[43]  Chatchatee P, J?rvinen KM, Bardina L, Beyer K, Sampson HA (2001) Identification of IgE- and IgG-binding epitopes on alpha(s1)-casein: differences in patients with persistent and transient cow's milk allergy. J Allergy Clin Immunol 107: 379–383 doi:10.1067/mai.2001.112372.
[44]  Vila L, Beyer K, J?rvinen KM, Chatchatee P, Bardina L, et al. (2001) Role of conformational and linear epitopes in the achievement of tolerance in cow's milk allergy. Clin Exp Allergy J Br Soc Allergy Clin Immunol 31: 1599–1606.
[45]  Cerecedo I, Zamora J, Shreffler WG, Lin J, Bardina L, et al. (2008) Mapping of the IgE and IgG4 sequential epitopes of milk allergens with a peptide microarray-based immunoassay. J Allergy Clin Immunol 122: 589–594 doi:10.1016/j.jaci.2008.06.040.
[46]  Cocco RR, J?rvinen K-M, Sampson HA, Beyer K (2003) Mutational analysis of major, sequential IgE-binding epitopes in alpha s1-casein, a major cow's milk allergen. J Allergy Clin Immunol 112: 433–437.
[47]  Fu CJ, Jez JM, Kerley MS, Allee GL, Krishnan HB (2007) Identification, characterization, epitope mapping, and three-dimensional modeling of the alpha-subunit of beta-conglycinin of soybean, a potential allergen for young pigs. J Agric Food Chem 55: 4014–4020 doi:10.1021/jf070211o.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133