[1] | Jónsdóttir IS, Watson M (1997) Extensive physiological integration: An adaptive trait in resource-poor environments? In: de Kroon H, van Groenendael J, editors. The ecology and evolution of clonal plants. Leiden, The Netherlands: Backhuys publishers. pp. 109–136.
|
[2] | Song YB, Yu FH, Keser LH, Dawson W, Fischer M, et al. (2013) United we stand, divided we fall: a meta-analysis of experiments on clonal integration and its relationship to invasiveness. Oecologia 171: 317–327 doi:10.1007/s00442-012-2430-9.
|
[3] | Stuefer JF, During HJ, De Kroon H (1994) High benefits of clonal integration in 2 stoloniferous species, in response to heterogeneous light environments. J Ecol 82: 511–518 doi:10.2307/2261260.
|
[4] | Stuefer JF, Hutchings MJ (1994) Environmental heterogeneity and clonal growth - a study of the capacity for reciprocal translocation in Glechoma hederacea L. Oecologia. 100: 302–308 doi:10.1007/Bf00316958.
|
[5] | Nilsson J, D′Hertefeldt T (2008) Origin matters for level of resource sharing in the clonal herb Aegopodium podagraria. Evol Ecol 22: 437–448 doi:10.1007/s10682-007-9199-z.
|
[6] | Roiloa SR, Hutchings MJ (2013) The effects of physiological integration on biomass partitioning in plant modules: an experimental study with the stoloniferous herb Glechoma hederacea. Plant Ecol 214: 521–530 doi:10.1007/s11258-013-0186-x.
|
[7] | Meyer K, Hellwig FH (1997) Annual cycle of starch content in rhizomes of the forest geophytes Anemone nemorosa and Aegopodium podagraria. Flora 192: 335–339.
|
[8] | Suzuki J-I, Stuefer J (1999) On the ecological and evolutionary significance of storage in clonal plants. Plant Species Biology 14: 11–17 doi:10.1046/j.1442-1984.1999.00002.x.
|
[9] | Chapin FS, Schulze ED, Mooney HA (1990) The ecology and economics of storage in plants. Annu Rev Ecol Syst 21: 423–447 doi:10.1146/annurev.es.21.110190.002231.
|
[10] | Walther GR (2010) Community and ecosystem responses to recent climate change. Philos T R Soc B 365: 2019–2024 doi:10.1098/rstb.2010.0021.
|
[11] | Chapin FS (1981) Field measurements of growth and phosphate absorption in Carex aquatilis along a latitudinal gradient. Arctic Alpine Res 13: 83–94.
|
[12] | Reinartz JA (1984) Life-History variation of common mullein (Verbascum thapsus) II. Plant size, biomass partitioning and morphology. J Ecol 72: 913–925 doi:10.2307/2259540.
|
[13] | Li B, Suzuki JI, Hara T (1998) Latitudinal variation in plant size and relative growth rate in Arabidopsis thaliana. Oecologia 115: 293–301 doi:10.1007/s004420050519.
|
[14] | Jia X, Pan XY, Sosa A, Li B, Chen JK (2010) Differentiation in growth and biomass allocation among three native Alternanthera philoxeroides varieties from Argentina. Plant Spec Biol 25: 85–92 doi:10.1111/j.1442-1984.2010.00271.x.
|
[15] | Sawada S, Nakajima Y, Tsukuda M, Sasaki K, Hazama Y, et al. (1994) Ecotypic differentiation of dry-matter production processes in relation to survivorship and reproductive potential in Plantago asiatica populations along climatic gradients. Funct Ecol 8: 400–409 doi:10.2307/2389834.
|
[16] | Schultz ET, Conover DO (1997) Latitudinal differences in somatic energy storage: Adaptive responses to seasonality in an estuarine fish (Atherinidae: Menidia menidia). Oecologia 109: 516–529 doi:10.1007/s004420050112.
|
[17] | Conover DO, Schultz ET (1995) Phenotypic similarity and the evolutionary significance of countergradient variation. Trends Ecol Evol 10: 248–252 doi:10.1016/S0169-5347(00)89081-3.
|
[18] | Olsson K, ?gren J (2002) Latitudinal population differentiation in phenology, life history and flower morphology in the perennial herb Lythrum salicaria. J Evol Biol 15: 983–996 doi:10.1046/j.1420-9101.2002.00457.x.
|
[19] | Conover DO, Duffy TA, Hice LA (2009) The covariance between genetic and environmental influences across ecological gradients reassessing the evolutionary significance of countergradient and cogradient variation. In: Schlichting CD, Mousseau TA, editors. Year in Evolutionary Biology 2009. Malden: Wiley-Blackwell. pp. 100–129.
|
[20] | De Frenne P, Brunet J, Shevtsova A, Kolb A, Graae BJ, et al. (2011) Temperature effects on forest herbs assessed by warming and transplant experiments along a latitudinal gradient. Global Change Biol 17: 3240–3253 doi:10.1111/j.1365-2486.2011.02449.x.
|
[21] | Dawson W, Rohr RP, van Kleunen M, Fischer M (2012) Alien plant species with a wider global distribution are better able to capitalize on increased resource availability. New Phytol 194: 859–867 doi:10.1111/j.1469-8137.2012.04104.x.
|
[22] | Price EAC, Gamble R, Williams GG, Marshall C (2001) Seasonal patterns of partitioning and remobilization of C-14 in the invasive rhizomatous perennial Japanese knotweed (Fallopia japonica (Houtt.) Ronse Decraene). Evol Ecol 15: 347–362 doi:10.1023/A:1016036916017.
|
[23] | Mattheis PJ, Tieszen LL, Lewis MC (1976) Responses of Dupontia Fischeri to simulated lemming grazing in an Alaskan arctic tundra. Ann Bot 40: 179–197.
|
[24] | Jónsdóttir IS, Callaghan TV (1988) Interrelationships between different generations of interconnected tillers of Carex Bigelowii. Oikos 52: 120–128 doi:10.2307/3565991.
|
[25] | Jónsdóttir IS, Callaghan TV (1990) Intraclonal translocation of ammonium and nitrate nitrogen in Carex bigelowii Torr. Ex. Schwein using N-15 and nitrate reductase assays. New Phytol 114: 419–428 doi:10.1111/j.1469-8137.1990.tb00409.x.
|
[26] | Ashmun JW, Thomas RJ, Pitelka LF (1982) Translocation of photo-assimilates between sister ramets in 2 rhizomatous forest herbs. Ann Bot 49: 403–415.
|
[27] | Newell SJ (1982) Translocation of C-14-labeled photoassimilate in 2 stoloniferous Viola species. B Torrey Bot Club 109: 306–317.
|
[28] | Landa K, Benner B, Watson MA, Gartner J (1992) Physiological integration for carbon in mayapple (Podophyllum peltatum), a clonal perennial herb. Oikos 63: 348–356 doi:10.2307/3544960.
|
[29] | Keble Martin W (1965) The concise British Flora in colour. London, UK: Ebury Press & Michael Joseph. 231 p.
|
[30] | Korsmo E, Vidme T, Frykse H (1986) Korsmos ugrasplansjer. Oslo, Norway: Landbrugsforlaget.
|
[31] | Mossberg B, Stenberg L (2010) Den nya nordiska floran. Stockholm: Wahlstr?m & Widstrand. 928 p.
|
[32] | Garske S, Schimpf D (2005) Fact Sheet: Goutweed. In: Swearingen JM, editor. Weeds Gone Wild: Alien Plant Invaders of Natural Areas. Washington DC. USA: Plant Conservation Alliance's Alien Plant Working Group.
|
[33] | Enestr?m J (2008) Life-history traits and population differentiation in a clonal plant: implications for establishment, persistence and weediness [PhD Thesis]. LundSweden: Lund University. 109 p.
|
[34] | Klime?ová J, Klime? L (2006) CLO-PLA3 - database of clonal growth form of central European flora.
|
[35] | Enestr?m J, Andersson S, D′Hertefeldt T (2009) Partitioning of genetic variation in the weedy clonal herb Aegopodium podagraria (Apiaceae) in Sweden. Nord J Bot 27: 437–443 doi:10.1111/j.1756-1051.2009.00495.x.
|
[36] | Salisbury EJ (1942) The Reproductive Capacity of Plants. London: Bell.
|
[37] | Swedish Metrological and Hydrological Institute (SMHI) (2013) STR?NG - a mesoscale model for solar radiation.
|
[38] | Swedish Metrological and Hydrological Institute (SMHI) (2011) PTHBV version 3 National mapping of climatic data for Swedish environmental monitoring. Developed by SMHI with financial support by the Swedish EPA.
|
[39] | Sj?rs H (2007) The background: Geology, climate and zonation. In: Sj?gren E, Rydin H, Snoeijs P, Diekmann M, editors. Swedish plant geography. Uppsala, Sweden. pp. 5–15.
|
[40] | Ericsson S (1991) V?xtlokaler i V?sterbottens l?n 2: Kyl?ren i H?rnefors socken, ?ngermanland, och om den nutida barlastfloran [In Swedish]. Natur i Norr 10: 77–90.
|
[41] | Dong B-C, Zhang M-X, Alpert P, Lei G-C, Yu F-H (2010) Effects of orientation on survival and growth of small fragments of the invasive, clonal plant Alternanthera philoxeroides. PLoS ONE 5: e13631 doi:10.1371/journal.pone.0013631.
|
[42] | Zar JH (1999) Biostatistical analysis. Upper Saddle River, N.J.: Prentice Hall. xii, 663 s. p.
|
[43] | Clausen J, Keck DD, Hiesey W (1940) Experimental studies on the nature of species. I. Effects of varied environments on western North American plants. Carnegie Institution of Washington Publication 520.
|
[44] | Raven PH, Evert RF, Eichhorn SE (1999) Biology of plants. New York: W.H. Freeman : Worth Publishers. xv, 944 p.
|
[45] | Zeevaart JA (1971) Effects of photoperiod on growth rate and endogenous gibberellins in long-day rosette plant spinach. Plant Physiology 47: 821–827 doi:10.1104/pp.47.6.821.
|
[46] | Ida TY, Kudo G (2009) Comparison of light harvesting and resource allocation strategies between two rhizomatous herbaceous species inhabiting deciduous forests. Journal of plant research 122: 171–181 doi:10.1007/s10265-008-0212-6.
|
[47] | D′Hertefeldt T, Jonsdottir IS (1999) Extensive physiological integration in intact clonal systems of Carex arenaria. J Ecol 87: 258–264 doi:10.1046/j.1365-2745.1999.00345.x.
|
[48] | D′Hertefeldt T, Falkengren-Grerup U (2002) Extensive physiological integration in Carex arenaria and Carex disticha in relation to potassium and water availability. New Phytol 156: 469–477 doi:10.1046/j.1469-8137.2002.00529.x.
|
[49] | Alpert P (1999) Clonal integration in Fragaria chiloensis differs between populations: ramets from grassland are selfish. Oecologia 120: 69–76 doi:10.1007/s004420050834.
|
[50] | Van Kleunen M, Fischer M, Schmid B, van Kleunen M (2000) Clonal integration in Ranunculus reptans: by-product or adaptation? J Evol Biol 13: 237–248 doi:10.1046/j.1420-9101.2000.00161.x.
|
[51] | Alpert P, Holzapfel C, Slominski C (2003) Differences in performance between genotypes of Fragaria chiloensis with different degrees of resource sharing. J Ecol 91: 27–35 doi:10.1046/j.1365-2745.2003.00737.x.
|
[52] | Chen JS, Yu D, Liu Q, Dong M (2004) Clonal integration of the stoloniferous herb Fragaria vesca from different altitudes in Southwest China. Flora 199: 342–350 doi:10.1078/0367-2530-00162.
|
[53] | Lotscher M, Hay MJM (1997) Genotypic differences in physiological integration, morphological plasticity and utilization of phosphorus induced by variation in phosphate supply in Trifolium repens. J Ecol 85: 341–350 doi:10.2307/2960506.
|
[54] | Prati D, Schmid B (2000) Genetic differentiation of life-history traits within populations of the clonal plant Ranunculus reptans. Oikos 90: 442–456 doi:10.1034/j.1600-0706.2000.900303.x.
|
[55] | Roiloa SR, Alpert P, Tharayil N, Hancock G, Bhowmik PC (2007) Greater capacity for division of labour in clones of Fragaria chiloensis from patchier habitats. J Ecol 95: 397–405 doi:10.1111/j.1365-2745.2007.01216.x.
|
[56] | Kik C, Vanandel J, Joenje W (1990) Life-hstory variation in ecologically contrasting populations of Agrostis stolonifera. J Ecol 78: 962–973 doi:10.2307/2260946.
|
[57] | Lovett Doust L (1987) Population dynamics and local specialization in a clonal perennial (Ranunculus repens) III. Responses to light and nutrient supply. J Ecol 75: 555–568 doi:10.2307/2260434.
|
[58] | Poorter H, Remkes C (1990) Leaf-area ratio and net asimilation rate of 24 wild species differing in relative growth rate. Oecologia 83: 553–559 doi:10.1007/BF00317209.
|
[59] | Loveys BR, Scheurwater I, Pons TL, Fitter AH, Atkin OK (2002) Growth temperature influences the underlying components of relative growth rate: an investigation using inherently fast- and slow-growing plant species. Plant Cell Environ 25: 975–987 doi:10.1046/j.1365-3040.2002.00879.x.
|