全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Geographic and Habitat Origin Influence Biomass Production and Storage Translocation in the Clonal Plant Aegopodium podagraria

DOI: 10.1371/journal.pone.0085407

Full-Text   Cite this paper   Add to My Lib

Abstract:

Through physiological integration, clonal plants can support ramets in unfavourable patches, exploit heterogeneously distributed resources and distribute resources that are taken up over large areas. Physiological integration generally increases in adverse conditions, but it is not well known which factors determine the evolution of physiological integration. The aim of this study was to investigate if clonal plants from Southern and Northern populations of the clonal herb Aegopodium podagraria differed in physiological integration in terms of translocation of carbon to the rhizomes, and in biomass production using a reciprocal transplant experiment. Aegopodium podagraria from shaded conditions have been suggested to share more resources than clones from open conditions and therefore, plants from forest and open populations within the Southern and Northern regions were included. The regional growing conditions greatly affected biomass production. Plants grown in North Sweden produced more biomass and allocated more biomass to shoots, while plants grown in South Sweden allocated more biomass to rhizomes. There was a regional origin effect as plants originating from North Sweden produced more biomass in both regions. Within the Northern region, plants from shaded habitats translocated more 14C to the rhizomes, suggesting more storage there than in plants from open habitats. In addition to genetic differentiation in biomass production between Northern and Southern populations, probably as a response to a shorter growing season in the North, there appeared to be genetic differentiation in physiological integration within the Northern region. This shows that both regional and local conditions need to be taken into account in future studies of genetic differentiation of physiological integration in clonal plants.

References

[1]  Jónsdóttir IS, Watson M (1997) Extensive physiological integration: An adaptive trait in resource-poor environments? In: de Kroon H, van Groenendael J, editors. The ecology and evolution of clonal plants. Leiden, The Netherlands: Backhuys publishers. pp. 109–136.
[2]  Song YB, Yu FH, Keser LH, Dawson W, Fischer M, et al. (2013) United we stand, divided we fall: a meta-analysis of experiments on clonal integration and its relationship to invasiveness. Oecologia 171: 317–327 doi:10.1007/s00442-012-2430-9.
[3]  Stuefer JF, During HJ, De Kroon H (1994) High benefits of clonal integration in 2 stoloniferous species, in response to heterogeneous light environments. J Ecol 82: 511–518 doi:10.2307/2261260.
[4]  Stuefer JF, Hutchings MJ (1994) Environmental heterogeneity and clonal growth - a study of the capacity for reciprocal translocation in Glechoma hederacea L. Oecologia. 100: 302–308 doi:10.1007/Bf00316958.
[5]  Nilsson J, D′Hertefeldt T (2008) Origin matters for level of resource sharing in the clonal herb Aegopodium podagraria. Evol Ecol 22: 437–448 doi:10.1007/s10682-007-9199-z.
[6]  Roiloa SR, Hutchings MJ (2013) The effects of physiological integration on biomass partitioning in plant modules: an experimental study with the stoloniferous herb Glechoma hederacea. Plant Ecol 214: 521–530 doi:10.1007/s11258-013-0186-x.
[7]  Meyer K, Hellwig FH (1997) Annual cycle of starch content in rhizomes of the forest geophytes Anemone nemorosa and Aegopodium podagraria. Flora 192: 335–339.
[8]  Suzuki J-I, Stuefer J (1999) On the ecological and evolutionary significance of storage in clonal plants. Plant Species Biology 14: 11–17 doi:10.1046/j.1442-1984.1999.00002.x.
[9]  Chapin FS, Schulze ED, Mooney HA (1990) The ecology and economics of storage in plants. Annu Rev Ecol Syst 21: 423–447 doi:10.1146/annurev.es.21.110190.002231.
[10]  Walther GR (2010) Community and ecosystem responses to recent climate change. Philos T R Soc B 365: 2019–2024 doi:10.1098/rstb.2010.0021.
[11]  Chapin FS (1981) Field measurements of growth and phosphate absorption in Carex aquatilis along a latitudinal gradient. Arctic Alpine Res 13: 83–94.
[12]  Reinartz JA (1984) Life-History variation of common mullein (Verbascum thapsus) II. Plant size, biomass partitioning and morphology. J Ecol 72: 913–925 doi:10.2307/2259540.
[13]  Li B, Suzuki JI, Hara T (1998) Latitudinal variation in plant size and relative growth rate in Arabidopsis thaliana. Oecologia 115: 293–301 doi:10.1007/s004420050519.
[14]  Jia X, Pan XY, Sosa A, Li B, Chen JK (2010) Differentiation in growth and biomass allocation among three native Alternanthera philoxeroides varieties from Argentina. Plant Spec Biol 25: 85–92 doi:10.1111/j.1442-1984.2010.00271.x.
[15]  Sawada S, Nakajima Y, Tsukuda M, Sasaki K, Hazama Y, et al. (1994) Ecotypic differentiation of dry-matter production processes in relation to survivorship and reproductive potential in Plantago asiatica populations along climatic gradients. Funct Ecol 8: 400–409 doi:10.2307/2389834.
[16]  Schultz ET, Conover DO (1997) Latitudinal differences in somatic energy storage: Adaptive responses to seasonality in an estuarine fish (Atherinidae: Menidia menidia). Oecologia 109: 516–529 doi:10.1007/s004420050112.
[17]  Conover DO, Schultz ET (1995) Phenotypic similarity and the evolutionary significance of countergradient variation. Trends Ecol Evol 10: 248–252 doi:10.1016/S0169-5347(00)89081-3.
[18]  Olsson K, ?gren J (2002) Latitudinal population differentiation in phenology, life history and flower morphology in the perennial herb Lythrum salicaria. J Evol Biol 15: 983–996 doi:10.1046/j.1420-9101.2002.00457.x.
[19]  Conover DO, Duffy TA, Hice LA (2009) The covariance between genetic and environmental influences across ecological gradients reassessing the evolutionary significance of countergradient and cogradient variation. In: Schlichting CD, Mousseau TA, editors. Year in Evolutionary Biology 2009. Malden: Wiley-Blackwell. pp. 100–129.
[20]  De Frenne P, Brunet J, Shevtsova A, Kolb A, Graae BJ, et al. (2011) Temperature effects on forest herbs assessed by warming and transplant experiments along a latitudinal gradient. Global Change Biol 17: 3240–3253 doi:10.1111/j.1365-2486.2011.02449.x.
[21]  Dawson W, Rohr RP, van Kleunen M, Fischer M (2012) Alien plant species with a wider global distribution are better able to capitalize on increased resource availability. New Phytol 194: 859–867 doi:10.1111/j.1469-8137.2012.04104.x.
[22]  Price EAC, Gamble R, Williams GG, Marshall C (2001) Seasonal patterns of partitioning and remobilization of C-14 in the invasive rhizomatous perennial Japanese knotweed (Fallopia japonica (Houtt.) Ronse Decraene). Evol Ecol 15: 347–362 doi:10.1023/A:1016036916017.
[23]  Mattheis PJ, Tieszen LL, Lewis MC (1976) Responses of Dupontia Fischeri to simulated lemming grazing in an Alaskan arctic tundra. Ann Bot 40: 179–197.
[24]  Jónsdóttir IS, Callaghan TV (1988) Interrelationships between different generations of interconnected tillers of Carex Bigelowii. Oikos 52: 120–128 doi:10.2307/3565991.
[25]  Jónsdóttir IS, Callaghan TV (1990) Intraclonal translocation of ammonium and nitrate nitrogen in Carex bigelowii Torr. Ex. Schwein using N-15 and nitrate reductase assays. New Phytol 114: 419–428 doi:10.1111/j.1469-8137.1990.tb00409.x.
[26]  Ashmun JW, Thomas RJ, Pitelka LF (1982) Translocation of photo-assimilates between sister ramets in 2 rhizomatous forest herbs. Ann Bot 49: 403–415.
[27]  Newell SJ (1982) Translocation of C-14-labeled photoassimilate in 2 stoloniferous Viola species. B Torrey Bot Club 109: 306–317.
[28]  Landa K, Benner B, Watson MA, Gartner J (1992) Physiological integration for carbon in mayapple (Podophyllum peltatum), a clonal perennial herb. Oikos 63: 348–356 doi:10.2307/3544960.
[29]  Keble Martin W (1965) The concise British Flora in colour. London, UK: Ebury Press & Michael Joseph. 231 p.
[30]  Korsmo E, Vidme T, Frykse H (1986) Korsmos ugrasplansjer. Oslo, Norway: Landbrugsforlaget.
[31]  Mossberg B, Stenberg L (2010) Den nya nordiska floran. Stockholm: Wahlstr?m & Widstrand. 928 p.
[32]  Garske S, Schimpf D (2005) Fact Sheet: Goutweed. In: Swearingen JM, editor. Weeds Gone Wild: Alien Plant Invaders of Natural Areas. Washington DC. USA: Plant Conservation Alliance's Alien Plant Working Group.
[33]  Enestr?m J (2008) Life-history traits and population differentiation in a clonal plant: implications for establishment, persistence and weediness [PhD Thesis]. LundSweden: Lund University. 109 p.
[34]  Klime?ová J, Klime? L (2006) CLO-PLA3 - database of clonal growth form of central European flora.
[35]  Enestr?m J, Andersson S, D′Hertefeldt T (2009) Partitioning of genetic variation in the weedy clonal herb Aegopodium podagraria (Apiaceae) in Sweden. Nord J Bot 27: 437–443 doi:10.1111/j.1756-1051.2009.00495.x.
[36]  Salisbury EJ (1942) The Reproductive Capacity of Plants. London: Bell.
[37]  Swedish Metrological and Hydrological Institute (SMHI) (2013) STR?NG - a mesoscale model for solar radiation.
[38]  Swedish Metrological and Hydrological Institute (SMHI) (2011) PTHBV version 3 National mapping of climatic data for Swedish environmental monitoring. Developed by SMHI with financial support by the Swedish EPA.
[39]  Sj?rs H (2007) The background: Geology, climate and zonation. In: Sj?gren E, Rydin H, Snoeijs P, Diekmann M, editors. Swedish plant geography. Uppsala, Sweden. pp. 5–15.
[40]  Ericsson S (1991) V?xtlokaler i V?sterbottens l?n 2: Kyl?ren i H?rnefors socken, ?ngermanland, och om den nutida barlastfloran [In Swedish]. Natur i Norr 10: 77–90.
[41]  Dong B-C, Zhang M-X, Alpert P, Lei G-C, Yu F-H (2010) Effects of orientation on survival and growth of small fragments of the invasive, clonal plant Alternanthera philoxeroides. PLoS ONE 5: e13631 doi:10.1371/journal.pone.0013631.
[42]  Zar JH (1999) Biostatistical analysis. Upper Saddle River, N.J.: Prentice Hall. xii, 663 s. p.
[43]  Clausen J, Keck DD, Hiesey W (1940) Experimental studies on the nature of species. I. Effects of varied environments on western North American plants. Carnegie Institution of Washington Publication 520.
[44]  Raven PH, Evert RF, Eichhorn SE (1999) Biology of plants. New York: W.H. Freeman : Worth Publishers. xv, 944 p.
[45]  Zeevaart JA (1971) Effects of photoperiod on growth rate and endogenous gibberellins in long-day rosette plant spinach. Plant Physiology 47: 821–827 doi:10.1104/pp.47.6.821.
[46]  Ida TY, Kudo G (2009) Comparison of light harvesting and resource allocation strategies between two rhizomatous herbaceous species inhabiting deciduous forests. Journal of plant research 122: 171–181 doi:10.1007/s10265-008-0212-6.
[47]  D′Hertefeldt T, Jonsdottir IS (1999) Extensive physiological integration in intact clonal systems of Carex arenaria. J Ecol 87: 258–264 doi:10.1046/j.1365-2745.1999.00345.x.
[48]  D′Hertefeldt T, Falkengren-Grerup U (2002) Extensive physiological integration in Carex arenaria and Carex disticha in relation to potassium and water availability. New Phytol 156: 469–477 doi:10.1046/j.1469-8137.2002.00529.x.
[49]  Alpert P (1999) Clonal integration in Fragaria chiloensis differs between populations: ramets from grassland are selfish. Oecologia 120: 69–76 doi:10.1007/s004420050834.
[50]  Van Kleunen M, Fischer M, Schmid B, van Kleunen M (2000) Clonal integration in Ranunculus reptans: by-product or adaptation? J Evol Biol 13: 237–248 doi:10.1046/j.1420-9101.2000.00161.x.
[51]  Alpert P, Holzapfel C, Slominski C (2003) Differences in performance between genotypes of Fragaria chiloensis with different degrees of resource sharing. J Ecol 91: 27–35 doi:10.1046/j.1365-2745.2003.00737.x.
[52]  Chen JS, Yu D, Liu Q, Dong M (2004) Clonal integration of the stoloniferous herb Fragaria vesca from different altitudes in Southwest China. Flora 199: 342–350 doi:10.1078/0367-2530-00162.
[53]  Lotscher M, Hay MJM (1997) Genotypic differences in physiological integration, morphological plasticity and utilization of phosphorus induced by variation in phosphate supply in Trifolium repens. J Ecol 85: 341–350 doi:10.2307/2960506.
[54]  Prati D, Schmid B (2000) Genetic differentiation of life-history traits within populations of the clonal plant Ranunculus reptans. Oikos 90: 442–456 doi:10.1034/j.1600-0706.2000.900303.x.
[55]  Roiloa SR, Alpert P, Tharayil N, Hancock G, Bhowmik PC (2007) Greater capacity for division of labour in clones of Fragaria chiloensis from patchier habitats. J Ecol 95: 397–405 doi:10.1111/j.1365-2745.2007.01216.x.
[56]  Kik C, Vanandel J, Joenje W (1990) Life-hstory variation in ecologically contrasting populations of Agrostis stolonifera. J Ecol 78: 962–973 doi:10.2307/2260946.
[57]  Lovett Doust L (1987) Population dynamics and local specialization in a clonal perennial (Ranunculus repens) III. Responses to light and nutrient supply. J Ecol 75: 555–568 doi:10.2307/2260434.
[58]  Poorter H, Remkes C (1990) Leaf-area ratio and net asimilation rate of 24 wild species differing in relative growth rate. Oecologia 83: 553–559 doi:10.1007/BF00317209.
[59]  Loveys BR, Scheurwater I, Pons TL, Fitter AH, Atkin OK (2002) Growth temperature influences the underlying components of relative growth rate: an investigation using inherently fast- and slow-growing plant species. Plant Cell Environ 25: 975–987 doi:10.1046/j.1365-3040.2002.00879.x.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133