全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Evaluating the Use of Multilocus Variable Number Tandem Repeat Analysis of Shiga Toxin-Producing Escherichia coli O157 as a Routine Public Health Tool in England

DOI: 10.1371/journal.pone.0085901

Full-Text   Cite this paper   Add to My Lib

Abstract:

Multilocus variable number tandem repeat analysis (MLVA) provides microbiological support for investigations of clusters of cases of infection with Shiga toxin-producing E. coli (STEC) O157. All confirmed STEC O157 isolated in England and submitted to the Gastrointestinal Bacteria Reference Unit (GBRU) during a six month period were typed using MLVA, with the aim of assessing the impact of this approach on epidemiological investigations. Of 539 cases investigated, 341 (76%) had unique (>2 single locus variants) MLVA profiles, 12% of profiles occurred more than once due to known household transmission and 12% of profiles occurred as part of 41 clusters, 21 of which were previously identified through routine public health investigation of cases. The remaining 20 clusters were not previously detected and STEC enhanced surveillance data for associated cases were retrospectively reviewed for epidemiological links including shared exposures, geography and/or time. Additional evidence of a link between cases was found in twelve clusters. Compared to phage typing, the number of sporadic cases was reduced from 69% to 41% and the diversity index for MLVA was 0.996 versus 0.782 for phage typing. Using MLVA generates more data on the spatial and temporal dispersion of cases, better defining the epidemiology of STEC infection than phage typing. The increased detection of clusters through MLVA typing highlights the challenges to health protection practices, providing a forerunner to the advent of whole genome sequencing as a diagnostic tool.

References

[1]  Lynn RM, O'Brien SJ, Taylor CM, Adak GK, Chart H, et al. (2005) Childhood hemolytic uremic syndrome, United Kingdom and Ireland. Emerg Infect Dis 11(4): 590–596.
[2]  Armstrong GL, Hollingsworth J, Morris JG Jr (1996) Emerging foodborne pathogens: Escherichia coli O157:H7 as a model of entry of a new pathogen into the food supply of the developed world. Epidemiol Rev 18(1): 29–51.
[3]  Gillespie IA, O'Brien SJ, Adak GK, Cheasty T, Willshaw G (2005) Foodborne general outbreaks of Shiga toxin-producing Escherichia coli O157 in England and Wales 1992–2002: where are the risks? Epidemiol Infect 133(5): 803–808.
[4]  Locking ME, O'Brien SJ, Reilly WJ, Wright EM, Campbell DM, et al. (2001) Risk factors for sporadic cases of Escherichia coli O157 infection: the importance of contact with animal excreta. Epidemiol Infect 127(2): 215–220.
[5]  O'Brien SJ, Adak GK, Gilham C (2001) Contact with farming environment as a major risk factor for Shiga toxin (Vero cytotoxin)-producing Escherichia coli O157 infection in humans. Emerg Infect Dis 7(6): 1049–1051.
[6]  Pritchard GC, Smith R, Ellis-Iversen J, Cheasty T, Willshaw GA (2009) Verocytotoxigenic Escherichia coli O157 in animals on public amenity premises in England and Wales, 1997 to 2007. Vet Rec 164(18): 545–549.
[7]  Cowden JM, Ahmed S, Donaghy M, Riley A (2001) Epidemiological investigation of the central Scotland outbreak of Escherichia coli O157 infection, November to December 1996. Epidemiol Infect 126(3): 335–341.
[8]  Ihekweazu C, Carroll K, Adak B, Smith G, Pritchard GC, et al. (2012) Large outbreak of verocytotoxin-producing Escherichia coli O157 infection in visitors to a petting farm in South East England, 2009. Epidemiol Infect 140(8): 1400–1413.
[9]  Salmon R (2005) Outbreak of verotoxin producing E.coli O157 infections involving over forty schools in south Wales, September 2005. Euro Surveill 10(10): E051006.
[10]  Khakhria R, Duck D, Lior H (1990) Extended phage-typing scheme for Escherichia coli O157:H7. Epidemiol Infect 105(3): 511–520.
[11]  Hyytia-Trees E, Smole SC, Fields PA, Swaminathan B, Ribot EM (2006) Second generation subtyping: a proposed PulseNet protocol for multiple-locus variable-number tandem repeat analysis of Shiga toxin-producing Escherichia coli O157 (STEC O157). Foodborne Pathog Dis 3(1): 118–131.
[12]  Perry N, Cheasty T, Dallman T, Launders N, Willshaw G. (2013) Application of multi-locus variable number tandem repeat analysis to monitor Verocytotoxin-producing Escherichia coli O157 phage type 8 in England and Wales: emergence of a profile associated with a national outbreak. J Appl Microbiol:10.
[13]  Underwood AP, Dallman T, Thomson NR, Williams M, Harker K, et al. (2013) Public health value of next-generation DNA sequencing of enterohemorrhagic Escherichia coli isolates from an outbreak. J Clin Microbiol 51(1): 232–237.
[14]  Jenkins C, Lawson AJ, Cheasty T, Willshaw GA (2012) Assessment of a real-time PCR for the detection and characterization of verocytotoxigenic Escherichia coli. J Med Microbiol 61 (Pt 8): 1082–1085.
[15]  Hyytia-Trees E, Lafon P, Vauterin P, Ribot EM (2010) Multilaboratory validation study of standardized multiple-locus variable-number tandem repeat analysis protocol for shiga toxin-producing Escherichia coli O157: a novel approach to normalize fragment size data between capillary electrophoresis platforms. Foodborne Pathog Dis 7(2): 129–136.
[16]  Hunter PR, Gaston MA (1988) Numerical index of the discriminatory ability of typing systems: an application of Simpson's index of diversity. J Clin Microbiol 26(11): 2465–2466.
[17]  Dyet KH, Robertson I, Turbitt E, Carter PE (2011) Characterization of Escherichia coli O157:H7 in New Zealand using multiple-locus variable-number tandem-repeat analysis. Epidemiol Infect 139(3): 464–471.
[18]  Noller AC, McEllistrem MC, Pacheco AG, Boxrud DJ, Harrison LH (2003) Multilocus variable-number tandem repeat analysis distinguishes outbreak and sporadic Escherichia coli O157:H7 isolates. J Clin Microbiol 41(12): 5389–5397.
[19]  Pei Y, Terajima J, Saito Y, Suzuki R, Takai N, et al. (2008) Molecular characterization of enterohemorrhagic Escherichia coli O157:H7 isolates dispersed across Japan by pulsed-field gel electrophoresis and multiple-locus variable-number tandem repeat analysis. Jpn J Infect Dis 61(1): 58–64.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133