全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

The Internal Organization of Mycobacterial Partition Assembly: Does the DNA Wrap a Protein Core?

DOI: 10.1371/journal.pone.0052690

Full-Text   Cite this paper   Add to My Lib

Abstract:

Before cell division in many bacteria, the ParBs spread on a large segment of DNA encompassing the origin-proximal parS site(s) to form the partition assembly that participates in chromosome segregation. Little is known about the structural organization of chromosomal partition assembly. We report solution X-ray and neutron scattering data characterizing the size parameters and internal organization of a nucleoprotein assembly formed by the mycobacterial chromosomal ParB and a 120-meric DNA containing a parS-encompassing region from the mycobacterial genome. The cross-sectional radii of gyration and linear mass density describing the rod-like ParB-DNA assembly were determined from solution scattering. A “DNA outside, protein inside” mode of partition assembly organization consistent with the neutron scattering hydrogen/deuterium contrast variation data is discussed. In this organization, the high scattering DNA is positioned towards the outer region of the partition assembly. The new results presented here provide a basis for understanding how ParBs organize the parS-proximal chromosome, thus setting the stage for further interactions with the DNA condensins, the origin tethering factors and the ParA.

References

[1]  Hayes F, Barillà D (2006) The bacterial segrosome: a dynamic nucleoprotein machine for DNA trafficking and segregation. Nature Rev Microbiol 4: 133–43.
[2]  Gerdes K, Howard M, Szardenings F (2010) Pushing and pulling in prokaryotic DNA segregation. Cell 141: 927–42.
[3]  Fogel MA, Waldor MK (2006) A dynamic, mitotic-like mechanism for bacterial chromosome segregation. Genes Dev. 20: 3269–3282.
[4]  Ptacin JL, Lee SF, Garner EC, Toro E, Eckart M, et al. (2010) A spindle-like apparatus guides bacterial chromosome segregation. Nature Cell Biol. 12: 791–8.
[5]  Gerdes K, M?ller-Jensen J, Bugge-Jensen R (2000) Plasmid and chromosome partitioning: surprises from phylogeny. Mol Microbiol. 37: 455–66.
[6]  Livny J, Yamaichi Y, Waldor MK (2007) Distribution of centromere-like parS sites in bacteria: insights from comparative genomics. J Bacteriol. 189: 8693–703.
[7]  Ingerson-Mahar M, Gitai Z (2012) A growing family: the expanding universe of the bacterial cytoskeleton. FEMS Microbiol Rev. 36: 256–67.
[8]  Murray H, Ferreira H, Errington J (2006) The bacterial chromosome segregation protein Spo0J spreads along DNA from parS nucleation sites. Mol Microbiol. 61: 1352–61.
[9]  Breier AM, Grossman AD (2007) Whole-genome analysis of the chromosome partitioning and sporulation protein Spo0J (ParB) reveals spreading and origin-distal sites on the Bacillus subtilis chromosome. Mol Microbiol. 64: 703–18.
[10]  Kusiak M, Gapczynska A, Plochocka D, Thomas CM, Jagura-Burdzy G (2011) ParB binding and spreading on DNA determine its biological function in Pseudomonas aeruginosa. J Bacteriol. 193: 3342–55.
[11]  Shebelut CW, Guberman JM, van Teeffelen S, Yakhnina AA, Gitai Z (2010) Caulobacter chromosome segregation is an ordered multistep process. P Natl Acad Sci USA 107: 14194–14198.
[12]  Vecchiarelli AG, Han YW, Tan X, Mizuuchi M, Ghirlando R, et al. (2010) ATP control of dynamic P1 ParA-DNA interactions: a key role for the nucleoid in plasmid partition. Mol Microbiol. 78: 78–91.
[13]  Banigan EJ, Gelbart MA, Gitai Z, Wingreen NS, Liu AJ (2011) Filament depolymerization can explain chromosome pulling during bacterial mitosis. PLoS Comput Biol. 7: e1002145.
[14]  Schofield WB, Lim HC, Jacobs-Wagner C (2010) Cell cycle coordination and regulation of bacterial chromosome segregation dynamics by polarly localized proteins. EMBO J. 29: 3068–81.
[15]  Sullivan NL, Marquis KA, Rudner DZ (2009) Recruitment of SMC by ParB-parS organizes the origin region and promotes efficient chromosome segregation. Cell 137: 697–707.
[16]  Gruber S, Errington J (2009) Recruitment of condensin to replication origin regions by ParB/SpoOJ promotes chromosome segregation in B. subtilis. Cell 137: 685–96.
[17]  Minnen A, Attaiech L, Thon M, Gruber S, Veening JW (2011) SMC is recruited to oriC by ParB and promotes chromosome segregation in Streptococcus pneumoniae. Mol Microbiol. 81: 676–88.
[18]  Bowman GR, Comolli LR, Zhu J, Eckart M, Koenig M, et al. (2008) A polymeric protein anchors the chromosomal origin/ParB complex at a bacterial cell pole. Cell 134: 945–55.
[19]  Thanbichler M, Shapiro L (2006) MipZ, a spatial regulator coordinating chromosome segregation with cell division in Caulobacter. Cell 126: 147–62.
[20]  Donovan C, Sieger B, Kr?mer R, Bramkamp M (2012) A synthetic Escherichia coli system identifies a conserved origin tethering factor in Actinobacteria. Mol Microbiol. 84: 105–16.
[21]  Umbarger MA, Toro E, Wright MA, Porreca GJ, Baù D, et al. (2011) The three-dimensional architecture of a bacterial genome and its alteration by genetic perturbation. Mol Cell. 44: 252–64.
[22]  Schumacher MA (2008) Structural biology of plasmid partition: uncovering the molecular mechanisms of DNA segregation. Biochem J. 412: 1–18.
[23]  Jakimowicz D, Brzostek A, Rumijowska-Galewicz A, Zydek P, Do?zb?asz A, et al. (2007) Characterization of the mycobacterial chromosome segregation protein ParB and identification of its target in Mycobacterium smegmatis. Microbiology. 153: 4050–60.
[24]  Maloney E, Madiraju M, Rajagopalan M (2009) Overproduction and localization of Mycobacterium tuberculosis ParA and ParB proteins. Tuberculosis 89: S65–9.
[25]  Nisa S, Blokpoel MC, Robertson BD, Tyndall JD, Lun S, et al. (2010) Targeting the chromosome partitioning protein ParA in tuberculosis drug discovery. J Antimicrob Chemother. 65: 2347–58.
[26]  Chaudhuri BN, Dean R (2011) The Evidence of Large-Scale DNA-Induced Compaction in the Mycobacterial Chromosomal ParB. J Mol Biol. 413: 901–7.
[27]  Chaudhuri BN, Gupta S, Urban VS, Chance MR, D’Mello R, et al. (2011) A combined global and local approach to elucidate spatial organization of the Mycobacterial ParB-parS partition assembly. Biochemistry. 50: 1799–807.
[28]  Tsuruta H, Brennan S, Rek ZU, Irving TC, Tompkins WH, et al. (1998) A wide-bandpass multilayer monochromator for biological small-angle scattering and fiber diffraction studies. J. Appl. Cryst. 31: 672–682.
[29]  Smolsky IL, Liu P, Niebuhr M, Ito K, Weiss TM, et al. (2007) Biological small-angle X-ray scattering facility at the Stanford Synchrotron Radiation Laboratory. J. Appl. Cryst. 40 (Supplement): s453–s458.
[30]  Lynn GW, Heller W, Urban V, Wignall GD, Weiss K, et al. (2006) Bio-SANS - A dedicated facility for neutron structural biology at Oak Ridge National Laboratory. Physica B: Condensed Matter 880: 385–386.
[31]  Whitten AE, Cai S, Trewhella J (2008) MULCh: modules for the analysis of small-angle neutron contrast variation data from biomolecular assemblies. J Appl Cryst. 41: 222–226.
[32]  Konarev PV, Petoukhov MV, Volkov VV, Svergun DI (2006) ATSAS 2.1, a program package for small-angle scattering data analysis. J Appl Cryst. 39: 277–286.
[33]  Konarev PV, Volkov VV, Sokolova AV, Koch MHJ, Svergun DI (2003) PRIMUS - a Windows-PC based system for small-angle scattering data analysis. J Appl Cryst. 36: 1277–1282.
[34]  Svergun DI (1992) Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J. Appl. Crystallogr. 25: 495–503.
[35]  Thiyagarajan P, Burkoth TS, Urban V, Seifert S, Benzinger TLS, et al. (2000) pH dependent self assembly of β-amyloid (10–35) and β-amyloid(10–35)-PEG3000. J. Appl. Cryst. 33: 535–539.
[36]  DiCapua E, Schnarr M, Timmins PA (1989) The location of DNA in complexes of recA protein with double-stranded DNA. A neutron scattering study. Biochemistry 28: 3287–92.
[37]  Graziano V, Gerchman SE, Schneider DK, Ramakrishnan V (1994) Histone H1 is located in the interior of the chromatin 30-nm filament. Nature. 368: 351–4.
[38]  Inoko Y, Yamamoto M, Fujiwara S, Ueki T (1992) X-ray scattering study of the shape of the DNA region in nucleosome core particle with synchrotron radiation. J Biochem. 111: 3106.
[39]  Hjelm RP, Kneale GG, Sauau P, Baldwin JP, Bradbury EM, et al. (1977) Small angle neutron scattering studies of chromatin subunits in solution. Cell 10: 139–51.
[40]  Ibel K, Stuhrmann HB (1975) Comparison of neutron and X-ray scattering of dilute myoglobin solutions. J. Mol. Biol. 93: 255–265.
[41]  Perkins SJ (1988) Structural studies of proteins by high-flux X-ray and neutron solution scattering. Biochem J. 254: 313–27.
[42]  Glatter O (1980) Evaluation of small-angle scattering data from lamellar and cylindrical particles by the indirect transformation method. J Appl Crystallogr. 13: 577–584.
[43]  Whitten AE, Jeffries CM, Harris SP, Trewhella J (2008) Cardiac myosin-binding protein C decorates F-actin: implications for cardiac function. Proc Natl Acad Sci U S A. 105: 18360–5.
[44]  Gerchman SE, Ramakrishnan V (1987) Chromatin higher-order structure studied by neutron scattering and scanning transmission electron microscopy. Proc Natl Acad Sci U S A. 84: 7802–6.
[45]  Schumacher MA, Glover TC, Brzoska AJ, Jensen SO, Dunham TD, et al. (2007) Segrosome structure revealed by a complex of ParR with centromere DNA. Nature. 450: 1268–71.
[46]  M?ller-Jensen J, Ringgaard S, Mercogliano CP, Gerdes K, L?we J (2007) Structural analysis of the ParR/parC plasmid partition complex. EMBO J. 26: 4413–22.
[47]  Aylett CH, L?we J (2012) Superstructure of the centromeric complex of TubZRC plasmid partitioning systems. Proc Natl Acad Sci U S A. 109(41): 16522–7.
[48]  Schumacher MA, Piro PM, Xu W (2010) Insight into F plasmid DNA segregation revealed by structures of SopB and SopB-DNA complexes. Nucleic Acids Res. 38: 4514–26.
[49]  Szardenings F, Guymer D, Gerdes K (2011) ParA ATPases can move and position DNA and subcellular structures. Curr Opin Microbiol. 14(6): 712–8.
[50]  Lutkenhaus J (2012) The ParA/MinD family puts things in their place. Trends Microbiol. 20(9): 411–8.
[51]  Vecchiarelli AG, Mizuuchi K, Funnell BE (2012) Surfing biological surfaces: exploiting the nucleoid for partition and transport in bacteria. Mol Microbiol. 86(3): 513–23.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133