[1] | Hayes F, Barillà D (2006) The bacterial segrosome: a dynamic nucleoprotein machine for DNA trafficking and segregation. Nature Rev Microbiol 4: 133–43.
|
[2] | Gerdes K, Howard M, Szardenings F (2010) Pushing and pulling in prokaryotic DNA segregation. Cell 141: 927–42.
|
[3] | Fogel MA, Waldor MK (2006) A dynamic, mitotic-like mechanism for bacterial chromosome segregation. Genes Dev. 20: 3269–3282.
|
[4] | Ptacin JL, Lee SF, Garner EC, Toro E, Eckart M, et al. (2010) A spindle-like apparatus guides bacterial chromosome segregation. Nature Cell Biol. 12: 791–8.
|
[5] | Gerdes K, M?ller-Jensen J, Bugge-Jensen R (2000) Plasmid and chromosome partitioning: surprises from phylogeny. Mol Microbiol. 37: 455–66.
|
[6] | Livny J, Yamaichi Y, Waldor MK (2007) Distribution of centromere-like parS sites in bacteria: insights from comparative genomics. J Bacteriol. 189: 8693–703.
|
[7] | Ingerson-Mahar M, Gitai Z (2012) A growing family: the expanding universe of the bacterial cytoskeleton. FEMS Microbiol Rev. 36: 256–67.
|
[8] | Murray H, Ferreira H, Errington J (2006) The bacterial chromosome segregation protein Spo0J spreads along DNA from parS nucleation sites. Mol Microbiol. 61: 1352–61.
|
[9] | Breier AM, Grossman AD (2007) Whole-genome analysis of the chromosome partitioning and sporulation protein Spo0J (ParB) reveals spreading and origin-distal sites on the Bacillus subtilis chromosome. Mol Microbiol. 64: 703–18.
|
[10] | Kusiak M, Gapczynska A, Plochocka D, Thomas CM, Jagura-Burdzy G (2011) ParB binding and spreading on DNA determine its biological function in Pseudomonas aeruginosa. J Bacteriol. 193: 3342–55.
|
[11] | Shebelut CW, Guberman JM, van Teeffelen S, Yakhnina AA, Gitai Z (2010) Caulobacter chromosome segregation is an ordered multistep process. P Natl Acad Sci USA 107: 14194–14198.
|
[12] | Vecchiarelli AG, Han YW, Tan X, Mizuuchi M, Ghirlando R, et al. (2010) ATP control of dynamic P1 ParA-DNA interactions: a key role for the nucleoid in plasmid partition. Mol Microbiol. 78: 78–91.
|
[13] | Banigan EJ, Gelbart MA, Gitai Z, Wingreen NS, Liu AJ (2011) Filament depolymerization can explain chromosome pulling during bacterial mitosis. PLoS Comput Biol. 7: e1002145.
|
[14] | Schofield WB, Lim HC, Jacobs-Wagner C (2010) Cell cycle coordination and regulation of bacterial chromosome segregation dynamics by polarly localized proteins. EMBO J. 29: 3068–81.
|
[15] | Sullivan NL, Marquis KA, Rudner DZ (2009) Recruitment of SMC by ParB-parS organizes the origin region and promotes efficient chromosome segregation. Cell 137: 697–707.
|
[16] | Gruber S, Errington J (2009) Recruitment of condensin to replication origin regions by ParB/SpoOJ promotes chromosome segregation in B. subtilis. Cell 137: 685–96.
|
[17] | Minnen A, Attaiech L, Thon M, Gruber S, Veening JW (2011) SMC is recruited to oriC by ParB and promotes chromosome segregation in Streptococcus pneumoniae. Mol Microbiol. 81: 676–88.
|
[18] | Bowman GR, Comolli LR, Zhu J, Eckart M, Koenig M, et al. (2008) A polymeric protein anchors the chromosomal origin/ParB complex at a bacterial cell pole. Cell 134: 945–55.
|
[19] | Thanbichler M, Shapiro L (2006) MipZ, a spatial regulator coordinating chromosome segregation with cell division in Caulobacter. Cell 126: 147–62.
|
[20] | Donovan C, Sieger B, Kr?mer R, Bramkamp M (2012) A synthetic Escherichia coli system identifies a conserved origin tethering factor in Actinobacteria. Mol Microbiol. 84: 105–16.
|
[21] | Umbarger MA, Toro E, Wright MA, Porreca GJ, Baù D, et al. (2011) The three-dimensional architecture of a bacterial genome and its alteration by genetic perturbation. Mol Cell. 44: 252–64.
|
[22] | Schumacher MA (2008) Structural biology of plasmid partition: uncovering the molecular mechanisms of DNA segregation. Biochem J. 412: 1–18.
|
[23] | Jakimowicz D, Brzostek A, Rumijowska-Galewicz A, Zydek P, Do?zb?asz A, et al. (2007) Characterization of the mycobacterial chromosome segregation protein ParB and identification of its target in Mycobacterium smegmatis. Microbiology. 153: 4050–60.
|
[24] | Maloney E, Madiraju M, Rajagopalan M (2009) Overproduction and localization of Mycobacterium tuberculosis ParA and ParB proteins. Tuberculosis 89: S65–9.
|
[25] | Nisa S, Blokpoel MC, Robertson BD, Tyndall JD, Lun S, et al. (2010) Targeting the chromosome partitioning protein ParA in tuberculosis drug discovery. J Antimicrob Chemother. 65: 2347–58.
|
[26] | Chaudhuri BN, Dean R (2011) The Evidence of Large-Scale DNA-Induced Compaction in the Mycobacterial Chromosomal ParB. J Mol Biol. 413: 901–7.
|
[27] | Chaudhuri BN, Gupta S, Urban VS, Chance MR, D’Mello R, et al. (2011) A combined global and local approach to elucidate spatial organization of the Mycobacterial ParB-parS partition assembly. Biochemistry. 50: 1799–807.
|
[28] | Tsuruta H, Brennan S, Rek ZU, Irving TC, Tompkins WH, et al. (1998) A wide-bandpass multilayer monochromator for biological small-angle scattering and fiber diffraction studies. J. Appl. Cryst. 31: 672–682.
|
[29] | Smolsky IL, Liu P, Niebuhr M, Ito K, Weiss TM, et al. (2007) Biological small-angle X-ray scattering facility at the Stanford Synchrotron Radiation Laboratory. J. Appl. Cryst. 40 (Supplement): s453–s458.
|
[30] | Lynn GW, Heller W, Urban V, Wignall GD, Weiss K, et al. (2006) Bio-SANS - A dedicated facility for neutron structural biology at Oak Ridge National Laboratory. Physica B: Condensed Matter 880: 385–386.
|
[31] | Whitten AE, Cai S, Trewhella J (2008) MULCh: modules for the analysis of small-angle neutron contrast variation data from biomolecular assemblies. J Appl Cryst. 41: 222–226.
|
[32] | Konarev PV, Petoukhov MV, Volkov VV, Svergun DI (2006) ATSAS 2.1, a program package for small-angle scattering data analysis. J Appl Cryst. 39: 277–286.
|
[33] | Konarev PV, Volkov VV, Sokolova AV, Koch MHJ, Svergun DI (2003) PRIMUS - a Windows-PC based system for small-angle scattering data analysis. J Appl Cryst. 36: 1277–1282.
|
[34] | Svergun DI (1992) Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J. Appl. Crystallogr. 25: 495–503.
|
[35] | Thiyagarajan P, Burkoth TS, Urban V, Seifert S, Benzinger TLS, et al. (2000) pH dependent self assembly of β-amyloid (10–35) and β-amyloid(10–35)-PEG3000. J. Appl. Cryst. 33: 535–539.
|
[36] | DiCapua E, Schnarr M, Timmins PA (1989) The location of DNA in complexes of recA protein with double-stranded DNA. A neutron scattering study. Biochemistry 28: 3287–92.
|
[37] | Graziano V, Gerchman SE, Schneider DK, Ramakrishnan V (1994) Histone H1 is located in the interior of the chromatin 30-nm filament. Nature. 368: 351–4.
|
[38] | Inoko Y, Yamamoto M, Fujiwara S, Ueki T (1992) X-ray scattering study of the shape of the DNA region in nucleosome core particle with synchrotron radiation. J Biochem. 111: 3106.
|
[39] | Hjelm RP, Kneale GG, Sauau P, Baldwin JP, Bradbury EM, et al. (1977) Small angle neutron scattering studies of chromatin subunits in solution. Cell 10: 139–51.
|
[40] | Ibel K, Stuhrmann HB (1975) Comparison of neutron and X-ray scattering of dilute myoglobin solutions. J. Mol. Biol. 93: 255–265.
|
[41] | Perkins SJ (1988) Structural studies of proteins by high-flux X-ray and neutron solution scattering. Biochem J. 254: 313–27.
|
[42] | Glatter O (1980) Evaluation of small-angle scattering data from lamellar and cylindrical particles by the indirect transformation method. J Appl Crystallogr. 13: 577–584.
|
[43] | Whitten AE, Jeffries CM, Harris SP, Trewhella J (2008) Cardiac myosin-binding protein C decorates F-actin: implications for cardiac function. Proc Natl Acad Sci U S A. 105: 18360–5.
|
[44] | Gerchman SE, Ramakrishnan V (1987) Chromatin higher-order structure studied by neutron scattering and scanning transmission electron microscopy. Proc Natl Acad Sci U S A. 84: 7802–6.
|
[45] | Schumacher MA, Glover TC, Brzoska AJ, Jensen SO, Dunham TD, et al. (2007) Segrosome structure revealed by a complex of ParR with centromere DNA. Nature. 450: 1268–71.
|
[46] | M?ller-Jensen J, Ringgaard S, Mercogliano CP, Gerdes K, L?we J (2007) Structural analysis of the ParR/parC plasmid partition complex. EMBO J. 26: 4413–22.
|
[47] | Aylett CH, L?we J (2012) Superstructure of the centromeric complex of TubZRC plasmid partitioning systems. Proc Natl Acad Sci U S A. 109(41): 16522–7.
|
[48] | Schumacher MA, Piro PM, Xu W (2010) Insight into F plasmid DNA segregation revealed by structures of SopB and SopB-DNA complexes. Nucleic Acids Res. 38: 4514–26.
|
[49] | Szardenings F, Guymer D, Gerdes K (2011) ParA ATPases can move and position DNA and subcellular structures. Curr Opin Microbiol. 14(6): 712–8.
|
[50] | Lutkenhaus J (2012) The ParA/MinD family puts things in their place. Trends Microbiol. 20(9): 411–8.
|
[51] | Vecchiarelli AG, Mizuuchi K, Funnell BE (2012) Surfing biological surfaces: exploiting the nucleoid for partition and transport in bacteria. Mol Microbiol. 86(3): 513–23.
|