全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Context- and Cell-Dependent Effects of Delta-Like 4 Targeting in the Bone Marrow Microenvironment

DOI: 10.1371/journal.pone.0052450

Full-Text   Cite this paper   Add to My Lib

Abstract:

Delta-like 4 (Dll4) is a ligand of the Notch pathway family which has been widely studied in the context of tumor angiogenesis, its blockade shown to result in non-productive angiogenesis and halted tumor growth. As Dll4 inhibitors enter the clinic, there is an emerging need to understand their side effects, namely the systemic consequences of Dll4:Notch blockade in tissues other than tumors. The present study focused on the effects of systemic anti-Dll4 targeting in the bone marrow (BM) microenvironment. Here we show that Dll4 blockade with monoclonal antibodies perturbs the BM vascular niche of sub-lethally irradiated mice, resulting in increased CD31+, VE-Cadherin+ and c-kit+ vessel density, and also increased megakaryocytes, whereas CD105+, VEGFR3+, SMA+ and lectin+ vessel density remained unaltered. We investigated also the expression of angiocrine genes upon Dll4 treatment in vivo, and demonstrate that IGFbp2, IGFbp3, Angpt2, Dll4, DHH and VEGF-A are upregulated, while FGF1 and CSF2 are reduced. In vitro treatment of endothelial cells with anti-Dll4 reduced Akt phosphorylation while maintaining similar levels of Erk 1/2 phosphorylation. Besides its effects in the BM vascular niche, anti-Dll4 treatment perturbed hematopoiesis, as evidenced by increased myeloid (CD11b+), decreased B (B220+) and T (CD3+) lymphoid BM content of treated mice, with a corresponding increase in myeloid circulating cells. Moreover, anti-Dll4 treatment also increased the number of CFU-M and -G colonies in methylcellulose assays, independently of Notch1. Finally, anti-Dll4 treatment of donor BM improved the hematopoietic recovery of lethally irradiated recipients in a transplant setting. Together, our data reveals the hematopoietic (BM) effects of systemic anti-Dll4 treatment result from qualitative vascular changes and also direct hematopoietic cell modulation, which may be favorable in a transplant setting.

References

[1]  Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4: 7–25.
[2]  Zhang J, Niu C, Ye L, Huang H, He X, et al. (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425: 836–841 doi:10.1038/nature02041.
[3]  Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, et al. (2004) Tie2/Angiopoietin-1 Signaling Regulates Hematopoietic Stem Cell Quiescence in the Bone Marrow Niche. Cell 118: 149–161 doi:10.1016/j.cell.2004.07.004.
[4]  Kiel MJ, Yilmaz ?H, Iwashita T, Yilmaz OH, Terhorst C, et al. (2005) SLAM Family Receptors Distinguish Hematopoietic Stem and Progenitor Cells and Reveal Endothelial Niches for Stem Cells. Cell 121: 1109–1121 doi:10.1016/j.cell.2005.05.026.
[5]  Xie Y, Yin T, Wiegraebe W, He XC, Miller D, et al. (2008) Detection of functional haematopoietic stem cell niche using real-time imaging. Nature 457: 97–102 doi:10.1038/nature07639.
[6]  Celso Lo C, Fleming HE, Wu JW, Zhao CX, Miake-Lye S, et al. (2008) Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature 457: 92–97 doi:10.1038/nature07434.
[7]  Butler JM, Nolan DJ, Vertes EL, Varnum-Finney B, Kobayashi H, et al. (2010) Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell 6: 251–264 doi:10.1016/j.stem.2010.02.001.
[8]  Kimura Y, Ding B, Imai N, Nolan DJ, Butler JM, et al. (2011) c-Kit-Mediated Functional Positioning of Stem Cells to Their Niches Is Essential for Maintenance and Regeneration of Adult Hematopoiesis. PLoS ONE 6: e26918 doi:10.1371/journal.pone.0026918.g006.
[9]  Ding L, Saunders TL, Enikolopov G, Morrison SJ (2012) Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481: 457–462 doi:10.1038/nature10783.
[10]  Rafii S, Shapiro F, Pettengell R, Ferris B, Nachman RL, et al. (1995) Human bone marrow microvascular endothelial cells support long-term proliferation and differentiation of myeloid and megakaryocytic progenitors. Blood 86: 3353–3363.
[11]  Kopp HG, Avecolla ST, Hooper AT, Shmelkov SV, Ramos CA, et al. (2005) Tie2 activation contributes to hemangiogenic regeneration after myelosuppression. Blood 106: 505–513 doi:10.1182/blood-2004–11–4269.
[12]  Chute JP, Muramoto GG, Salter AB, Meadows SK, Rickman DW, et al. (2007) Transplantation of vascular endothelial cells mediates the hematopoietic recovery and survival of lethally irradiated mice. Blood 109: 2365–2372 doi:10.1182/blood-2006–05–022640.
[13]  Hooper AT, Butler JM, Nolan DJ, Kranz A, Iida K, et al. (2009) Engraftment and Reconstitution of Hematopoiesis Is Dependent on VEGFR2-Mediated Regeneration of Sinusoidal Endothelial Cells. Stem Cell 4: 263–274 doi:10.1016/j.stem.2009.01.006.
[14]  Salter AB, Meadows SK, Muramoto GG, Himburg H, Doan P, et al. (2009) Endothelial progenitor cell infusion induces hematopoietic stem cell reconstitution in vivo. Blood 113: 2104–2107 doi:10.1182/blood-2008–06–162941.
[15]  Lamorte S, Remédio L, Dias S (2009) Communication between bone marrow niches in normal bone marrow function and during hemopathies progression. Hematol Rep 1. doi:10.4081/hr.2009.e14.
[16]  Patel NS, Li J-L, Generali D, Poulsom R, Cranston DW, et al. (2005) Up-regulation of delta-like 4 ligand in human tumor vasculature and the role of basal expression in endothelial cell function. Cancer Research 65: 8690–8697 doi:10.1158/0008–5472.CAN-05–1208.
[17]  Noguera-Troise I, Daly C, Papadopoulos NJ, Coetzee S, Boland P, et al. (2006) Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature 444: 1032–1037 doi:10.1038/nature05355.
[18]  Ridgway J, Zhang G, Wu Y, Stawicki S, Liang W-C, et al. (2006) Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature 444: 1083–1087 doi:10.1038/nature05313.
[19]  Real C, Remédio L, Caiado F, Igreja C, Borges C, et al. (2011) Bone Marrow-Derived Endothelial Progenitors Expressing Delta-Like 4 (Dll4) Regulate Tumor Angiogenesis. PLoS ONE 6: e18323 doi:10.1371/journal.pone.0018323.g007.
[20]  A Multiple-Ascending-Dose Study of the Safety and Tolerability of REGN421(SAR153192) in Patients With Advanced Solid Malignancies - Full Text View - ClinicalTrials.gov (2012) A Multiple-Ascending-Dose Study of the Safety and Tolerability of REGN421(SAR153192) in Patients With Advanced Solid Malignancies - Full Text View - ClinicalTrials.gov: 1–3.
[21]  A Phase 1 Dose Escalation Study of OMP-21M18 in Subjects With Solid Tumors - Full Text View - ClinicalTrials.gov (2012) A Phase 1 Dose Escalation Study of OMP-21M18 in Subjects With Solid Tumors - Full Text View - ClinicalTrials.gov: 1–3.
[22]  Skalli O, Pelte MF, Peclet MC, Gabbiani G, Gugliotta P, et al. (1989) Alpha-smooth muscle actin, a differentiation marker of smooth muscle cells, is present in microfilamentous bundles of pericytes. J Histochem Cytochem 37: 315–321 doi:10.1177/37.3.2918221.
[23]  Galmiche MC, Koteliansky VE, Brière J, Hervé P, Charbord P (1993) Stromal cells from human long-term marrow cultures are mesenchymal cells that differentiate following a vascular smooth muscle differentiation pathway. Blood 82: 66–76.
[24]  Bianco P, Riminucci M, Gronthos S, Robey PG (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19: 180–192 doi:10.1634/stemcells.19-3-180.
[25]  Bautch VL (2011) Stem cells and the vasculature. Nature Medicine 17: 1437–1443 doi:10.1038/nm.2539.
[26]  Kopp H-G, Avecilla ST, Hooper AT, Rafii S (2005) The bone marrow vascular niche: home of HSC differentiation and mobilization. Physiology (Bethesda) 20: 349–356 doi:10.1152/physiol.00025.2005.
[27]  Vainchenker W, Deschamps JF, Bastin JM, Guichard J, Titeux M, et al. (1982) Two monoclonal antiplatelet antibodies as markers of human megakaryocyte maturation: immunofluorescent staining and platelet peroxidase detection in megakaryocyte colonies and in in vivo cells from normal and leukemic patients. Blood 59: 514–521.
[28]  Kostyak JC, Naik MU, Naik UP (2012) Calcium- and integrin-binding protein 1 regulates megakaryocyte ploidy, adhesion, and migration. Blood 119: 838–846 doi:10.1182/blood-2011–04–346098.
[29]  Kobayashi H, Butler JM, O'Donnell R, Kobayashi M, Ding B-S, et al. (2010) Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells. Nature 12: 1046–1056 doi:10.1038/ncb2108.
[30]  Lauret E, Catelain C, Titeux M, Poirault S, Dando JS, et al. (2004) Membrane-bound Delta-4 Notch ligand reduces the proliferative activity of primitive human hematopoietic CD34+CD38low cells while maintaining their LTC-IC potential. Leukemia 18: 788–797 doi:10.1038/sj.leu.2403288.
[31]  Lahmar M, Catelain C, Poirault S, Dorsch M, Villeval J-L, et al. (2008) Distinct effects of the soluble versus membrane-bound forms of the notch ligand delta-4 on human CD34+CD38low cell expansion and differentiation. Stem Cells 26: 621–629 doi:10.1634/stemcells.2007–0428.
[32]  Karanu FN, Murdoch B, Miyabayashi T, Ohno M, Koremoto M, et al. (2001) Human homologues of Delta-1 and Delta-4 function as mitogenic regulators of primitive human hematopoietic cells. Blood 97: 1960–1967.
[33]  Dorsch M, Zheng G, Yowe D, Rao P, Wang Y, et al. (2002) Ectopic expression of Delta4 impairs hematopoietic development and leads to lymphoproliferative disease. Blood 100: 2046–2055.
[34]  Poirault-Chassac S, Six E, Catelain C, Lavergne M, Villeval J-L, et al. (2010) Notch/Delta4 signaling inhibits human megakaryocytic terminal differentiation. Blood 116: 5670–5678 doi:10.1182/blood-2010–05–285957.
[35]  Yan XQ, Sarmiento U, Sun Y, Huang G, Guo J, et al. (2001) A novel Notch ligand, Dll4, induces T-cell leukemia/lymphoma when overexpressed in mice by retroviral-mediated gene transfer. Blood 98: 3793–3799.
[36]  Hozumi K, Mailhos C, Negishi N, Hirano KI, Yahata T, et al. (2008) Delta-like 4 is indispensable in thymic environment specific for T cell development. Journal of Experimental Medicine 205: 2507–2513 doi:10.1084/jem.20080134.
[37]  Mohtashami M, Shah DK, Nakase H, Kianizad K, Petrie HT, et al. (2010) Direct comparison of Dll1- and Dll4-mediated Notch activation levels shows differential lymphomyeloid lineage commitment outcomes. The Journal of Immunology 185: 867–876 doi:10.4049/jimmunol.1000782.
[38]  Todd RF, Nadler LM, Schlossman SF (1981) Antigens on human monocytes identified by monoclonal antibodies. J Immunol 126: 1435–1442.
[39]  Wang J, Sun Q, Morita Y, Jiang H, Gro? A, et al. (2012) A Differentiation Checkpoint Limits Hematopoietic Stem Cell Self-Renewal in Response to DNA Damage. Cell 148: 1001–1014 doi:10.1016/j.cell.2012.01.040.
[40]  Coffman RL, Weissman IL (1981) B220: a B cell-specific member of th T200 glycoprotein family. Nature 289: 681–683.
[41]  Reinherz EL, Kung PC, Goldstein G, Levey RH, Schlossman SF (1980) Discrete stages of human intrathymic differentiation: analysis of normal thymocytes and leukemic lymphoblasts of T-cell lineage. Proc Natl Acad Sci USA 77: 1588–1592.
[42]  Spangrude GJ, Heimfeld S, Weissman IL (1988) Purification and characterization of mouse hematopoietic stem cells. Science 241: 58–62.
[43]  Christensen JL, Weissman IL (2001) Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells. Proc Natl Acad Sci USA 98: 14541–14546 doi:10.1073/pnas.261562798.
[44]  Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, et al. (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275: 964–967 doi:10.1126/science.275.5302.964.
[45]  Takahashi T, Kalka C, Masuda H, Chen D, Silver M, et al. (1999) Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nature Medicine 5: 434–438 doi:10.1038/7434.
[46]  Wheat LA, Haberzettl P, Hellmann J, Baba SP, Bertke M, et al. (2011) Acrolein Inhalation Prevents Vascular Endothelial Growth Factor-Induced Mobilization of Flk-1+/Sca-1+ Cells in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology 31: 1598–1606 doi:10.1161/ATVBAHA.111.227124.
[47]  Nakahata T, Ogawa M (1982) Identification in culture of a class of hemopoietic colony-forming units with extensive capability to self-renew and generate multipotential hemopoietic colonies. Proc Natl Acad Sci USA 79: 3843–3847.
[48]  Broxmeyer HE, Lee M-R, Hangoc G, Cooper S, Prasain N, et al. (2011) Hematopoietic stem/progenitor cells, generation of induced pluripotent stem cells, and isolation of endothelial progenitors from 21- to 23.5-year cryopreserved cord blood. Blood 117: 4773–4777 doi:10.1182/blood-2011–01–330514.
[49]  Ishida W, Fukuda K, Sakamoto S, Koyama N, Koyanagi A, et al. (2011) Regulation of experimental autoimmune uveoretinitis by anti-delta-like ligand 4 monoclonal antibody. Invest Ophthalmol Vis Sci 52: 8224–8230 doi:10.1167/iovs.11–7756.
[50]  Bassil R, Zhu B, Lahoud Y, Riella LV, Yagita H, et al. (2011) Notch Ligand Delta-Like 4 Blockade Alleviates Experimental Autoimmune Encephalomyelitis by Promoting Regulatory T Cell Development. The Journal of Immunology 187: 2322–2328 doi:10.4049/jimmunol.1100725.
[51]  Sunamura M, Yagita H (2008) Neutralizing monoclonal antibody against human Dll4.
[52]  Sunamura M, Yagita H (2008) Anti-Dll4 binding protein. UK Patent Application: 1–85.
[53]  Sekine C, Koyanagi A, Koyama N, Hozumi K, Chiba S, et al. (2012) Differential regulation of osteoclastogenesis by Notch2/Delta-like 1 and Notch1/Jagged1 axes. Arthritis Research & Therapy 14: R45 doi:10.1186/ar3758.
[54]  Nakamura-Ishizu A, Morikawa S, Shimizu K, Ezaki T (2008) Characterization of sinusoidal endothelial cells of the liver and bone marrow using an intravital lectin injection method. J Mol Histol 39: 471–479 doi:10.1007/s10735–008–9186-x.
[55]  Avecilla ST, Hattori K, Heissig B, Tejada R, Liao F, et al. (2004) Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nature Medicine 10: 64–71 doi:10.1038/nm973.
[56]  Yan M, Callahan CA, Beyer JC, Allamneni KP, Zhang G, et al. (2010) Chronic DLL4 blockade induces vascular neoplasms. Nature 463: E1–E1 doi:10.1038/nature08751.
[57]  Candal FJ, Rafii S, Parker JT, Ades EW, Ferris B, et al. (1996) BMEC-1: a human bone marrow microvascular endothelial cell line with primary cell characteristics. Microvasc Res 52: 221–234 doi:10.1006/mvre.1996.0060.
[58]  Takagi S, Saito Y, Hijikata A, Tanaka S, Watanabe T, et al.. (2012) Membrane-bound human SCF/KL promotes in vivo human hematopoietic engraftment and myeloid differentiation. Blood. doi:10.1182/blood-2011–05–353201.
[59]  Pitchford SC, Lodie T, Rankin SM (2012) VEGFR1 stimulates a CXCR4-dependent translocation of megakaryocytes to the vascular niche, enhancing platelet production in mice. Blood 120: 2787–2795 doi:10.1182/blood-2011–09–378174.
[60]  Li XM, Hu Z, Jorgenson ML, Slayton WB (2009) High Levels of Acetylated Low-Density Lipoprotein Uptake and Low Tyrosine Kinase With Immunoglobulin and Epidermal Growth Factor Homology Domains-2 (Tie2) Promoter Activity Distinguish Sinusoids From Other Vessel Types in Murine Bone Marrow. Circulation 120: 1910–1918 doi:10.1161/CIRCULATIONAHA.109.871574.
[61]  Vaporciyan AA, DeLisser HM, Yan HC, Mendiguren II, Thom SR, et al. (1993) Involvement of platelet-endothelial cell adhesion molecule-1 in neutrophil recruitment in vivo. Science 262: 1580–1582.
[62]  Piali L, Hammel P, Uherek C, Bachmann F, Gisler RH, et al. (1995) CD31/PECAM-1 is a ligand for alpha v beta 3 integrin involved in adhesion of leukocytes to endothelium. The Journal of Cell Biology 130: 451–460.
[63]  Wu Y, Welte T, Michaud M, Madri JA (2007) PECAM-1: a multifaceted regulator of megakaryocytopoiesis. Blood 110: 851–859 doi:10.1182/blood-2006–05–022087.
[64]  Dhanjal TS, Pendaries C, Ross EA, Larson MK, Protty MB, et al. (2007) A novel role for PECAM-1 in megakaryocytokinesis and recovery of platelet counts in thrombocytopenic mice. Blood 109: 4237–4244 doi:10.1182/blood-2006–10–050740.
[65]  Ross EA, Freeman S, Zhao Y, Dhanjal TS, Ross EJ, et al. (2008) A Novel Role for PECAM-1 (CD31) in Regulating Haematopoietic Progenitor Cell Compartmentalization between the Peripheral Blood and Bone Marrow. PLoS ONE 3: e2338 doi:10.1371/journal.pone.0002338.t001.
[66]  Bird IN, Taylor V, Newton JP, Spragg JH, Simmons DL, et al. (1999) Homophilic PECAM-1(CD31) interactions prevent endothelial cell apoptosis but do not support cell spreading or migration. Journal of Cell Science 112 (Pt 12): 1989–1997.
[67]  Cao G, O'Brien CD, Zhou Z, Sanders SM, Greenbaum JN, et al. (2002) Involvement of human PECAM-1 in angiogenesis and in vitro endothelial cell migration. Am J Physiol, Cell Physiol 282: C1181–C1190 doi:10.1152/ajpcell.00524.2001.
[68]  van Buul JD, Voermans C, van den Berg V, Anthony EC, Mul FPJ, et al. (2002) Migration of human hematopoietic progenitor cells across bone marrow endothelium is regulated by vascular endothelial cadherin. J Immunol 168: 588–596.
[69]  Nelson CM, Chen CS (2003) VE-cadherin simultaneously stimulates and inhibits cell proliferation by altering cytoskeletal structure and tension. Journal of Cell Science 116: 3571–3581 doi:10.1242/jcs.00680.
[70]  Chang K-H, Chan-Ling T, McFarland EL, Afzal A, Pan H, et al. (2007) IGF binding protein-3 regulates hematopoietic stem cell and endothelial precursor cell function during vascular development. Proc Natl Acad Sci USA 104: 10595–10600 doi:10.1073/pnas.0702072104.
[71]  Lofqvist C, Chen J, Connor KM, Smith ACH, Aderman CM, et al. (2007) IGFBP3 suppresses retinopathy through suppression of oxygen-induced vessel loss and promotion of vascular regrowth. Proc Natl Acad Sci USA 104: 10589–10594 doi:10.1073/pnas.0702031104.
[72]  Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, et al. (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277: 55–60 doi:10.1126/science.277.5322.55.
[73]  Heemskerk VH, Daemen MA, Buurman WA (1999) Insulin-like growth factor-1 (IGF-1) and growth hormone (GH) in immunity and inflammation. Cytokine Growth Factor Reviews 10: 5–14.
[74]  Lau C-I, Outram SV, Salda?a JI, Furmanski AL, Dessens JT, et al. (2012) Regulation of murine normal and stress-induced erythropoiesis by Desert Hedgehog. Blood 119: 4741–4751 doi:10.1182/blood-2011–10–387266.
[75]  Ohm JE, Gabrilovich DI, Sempowski GD, Kisseleva E, Parman KS, et al. (2003) VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression. Blood 101: 4878–4886 doi:10.1182/blood-2002–07–1956.
[76]  Huang Y, Chen X, Dikov MM, Novitskiy SV, Mosse CA, et al. (2007) Distinct roles of VEGFR-1 and VEGFR-2 in the aberrant hematopoiesis associated with elevated levels of VEGF. Blood 110: 624–631 doi:10.1182/blood-2007–01–065714.
[77]  Fragoso R, Igreja C, Clode N, Henriques A, Appleton C, et al. (2008) VEGF signaling on hematopoietic precursors restricts B-lymphoid commitment in vitro and in vivo. Exp Hematol 36: 1329–1336 doi:10.1016/j.exphem.2008.04.023.
[78]  Shutter JR, Scully S, Fan W, Richards WG, Kitajewski J, et al. (2000) Dll4, a novel Notch ligand expressed in arterial endothelium. Genes & Development 14: 1313–1318.
[79]  Itoi M, Tsukamoto N, Amagai T (2006) Expression of Dll4 and CCL25 in Foxn1-negative epithelial cells in the post-natal thymus. International Immunology 19: 127–132 doi:10.1093/intimm/dxl129.
[80]  Koch U, Fiorini E, Benedito R, Besseyrias V, Schuster-Gossler K, et al. (2008) Delta-like 4 is the essential, nonredundant ligand for Notch1 during thymic T cell lineage commitment. Journal of Experimental Medicine 205: 2515–2523 doi:10.1084/jem.20080829.
[81]  Harrington LS, Sainson RCA, Williams CK, Taylor JM, Shi W, et al. (2008) Regulation of multiple angiogenic pathways by Dll4 and Notch in human umbilical vein endothelial cells. Microvasc Res 75: 144–154 doi:10.1016/j.mvr.2007.06.006.
[82]  Dando JS, Tavian M, Catelain C, Poirault S, Bennaceur-Griscelli A, et al. (2005) Notch/Delta4 Interaction in Human Embryonic Liver CD34+CD38 ?Cells: Positive Influence on BFU-E Production and LTC-IC Potential Maintenance. Stem Cells 23: 550–560 doi:10.1634/stemcells.2004–0205.
[83]  La Coste de A, Six E, Fazilleau N, Mascarell L, Legrand N, et al. (2005) In vivo and in absence of a thymus, the enforced expression of the Notch ligands delta-1 or delta-4 promotes T cell development with specific unique effects. J Immunol 174: 2730–2737.
[84]  Tian ZG, Woody MA, Sun R, Welniak LA, Raziuddin A, et al. (1998) Recombinant human growth hormone promotes hematopoietic reconstitution after syngeneic bone marrow transplantation in mice. Stem Cells 16: 193–199 doi:10.1002/stem.160193.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133