全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Barriers to Gene Flow in the Marine Environment: Insights from Two Common Intertidal Limpet Species of the Atlantic and Mediterranean

DOI: 10.1371/journal.pone.0050330

Full-Text   Cite this paper   Add to My Lib

Abstract:

Knowledge of the scale of dispersal and the mechanisms governing gene flow in marine environments remains fragmentary despite being essential for understanding evolution of marine biota and to design management plans. We use the limpets Patella ulyssiponensis and Patella rustica as models for identifying factors affecting gene flow in marine organisms across the North-East Atlantic and the Mediterranean Sea. A set of allozyme loci and a fragment of the mitochondrial gene cytochrome C oxidase subunit I were screened for genetic variation through starch gel electrophoresis and DNA sequencing, respectively. An approach combining clustering algorithms with clinal analyses was used to test for the existence of barriers to gene flow and estimate their geographic location and abruptness. Sharp breaks in the genetic composition of individuals were observed in the transitions between the Atlantic and the Mediterranean and across southern Italian shores. An additional break within the Atlantic cluster separates samples from the Alboran Sea and Atlantic African shores from those of the Iberian Atlantic shores. The geographic congruence of the genetic breaks detected in these two limpet species strongly supports the existence of transpecific barriers to gene flow in the Mediterranean Sea and Northeastern Atlantic. This leads to testable hypotheses regarding factors restricting gene flow across the study area.

References

[1]  Palumbi SR (1992) Marine speciation on a small planet. Trends Ecol Evol 7(4): 114–118.
[2]  Palumbi SR (1994) Genetic divergence, reproductive isolation and marine speciation. Annu Rev Ecol Syst 25: 547–572.
[3]  Knowlton N, Keller B (1986) Larvae which fall far short of their potential: highly localized recruitment in an Alpheid shrimp with extended larval development. Bulletin of Marine Science 39(2): 213–223.
[4]  Swearer SE, Caselle JE, Lea DW, Warner RR (1999) Larval retention and self-recruitment in an island population of a coral-reef fish. Nature 402: 799–802.
[5]  Jones GP, Milicich MJ, Emslie MJ, Lunow C (1999) Self-recruitment in a coral reef fish population. Nature 402: 802–804.
[6]  Cowen RK, Lwiza KMM, Sponaugle S, Paris CB, Olson DB (2000) Connectivity of marine populations: open or closed? Science 287: 857–859.
[7]  Cowen RK, Paris CB, Srinivasan A (2006) Scaling of connectivity in marine populations. Science 311: 522–527.
[8]  Taylor MS, Hellberg ME (2003) Genetic evidence for local retention of pelagic larvae in Caribbean reef fish. Science 299: 107–109.
[9]  Barber PH, Palumbi SR, Erdmann MV, Moosa MK (2000) A marine Wallace's line? Nature 406: 692–693.
[10]  Lemaire C, Versini J-J, Bonhomme F (2005) Maintenance of genetic differentiation across a transition zone in the sea: discordance between nuclear and cytoplasmic markers. J Evol Biol 18: 70–80.
[11]  Barber PH, Palumbi SR, Erdmann MV, Moosa MK (2002) Sharp breaks among populations of Haptosquilla pulchella (Stomatopoda) indicate limits to larval transport: patterns, causes and consequences. Mol Ecol 11: 659–674.
[12]  Goldson AJ, Hughes RN, Gliddon CJ (2001) Population genetics consequences of larval dispersal mode and hydrography: a case study with bryozoans. Marine Biology 138: 1037–1042.
[13]  Sotka EE, Wares JP, Barth JA, Grosberg RK, Palumbi SR (2004) Strong genetic clines and geographical variation in gene flow in the rocky intertidal barnacle Balanus glandula. Mol Ecol 13: 2143–2156.
[14]  Zhan A, Hu J, Hu X, Zhou Z, Hui M, et al. (2009) Fine-scale population genetic structure of Zhikong scallop (Chlamys farreri): do local marine currents drive geographical differentiation? Mar Biotechnol 11: 223–235.
[15]  Gaither MR, Toonen RJ, Robertson DR, Planes S, Bowen BW (2010) Genetic evaluation of marine biogeographical barriers: perspectives from two widespread Indo-Pacific snappers (Lutjanus kasmira and Lutjanus fulvus). J Biogeogr 37: 133–147.
[16]  Véliz D, Bourget E, Bernatchez L (2004) Regional variation in the spatial scale of selection at MPI* and GPI* in the acorn barnacle Semibalanus balanoides(Crustacea). J Evol Biol 17: 953–966.
[17]  J?rgensen HBH, Hansen MM, Bekkevold D, Ruzzante DE, Loeschcke V (2005) Marine landscapes and population genetic structure of herring (Clupea harengus L.) in the Baltic Sea. Mol Ecol 14(10): 3219–3234.
[18]  Fontaine MC, Baird SJE, Piry S, Ray N, Tolley KA, et al. (2007) Rise of oceanographic barriers in continuous populations of a cetacean: the genetic structure of harbour porpoises in Old World waters. BMC Biol 5: 30.
[19]  Riginos C, Nachman MW (2001) Population subdivision in marine environments: the contribution of biogeography, geographical distance and discontinuous habitat to genetic differentiation in a blennioid fish, Axoclinus nigricaudus. Mol Ecol 10: 439–1453.
[20]  Pérez-Losada M, Nolte MJ, Crandall KA, Shaw PW (2007) Testing hypothesis of population structuring in the Northeast Atlantic Ocean and Mediterranean Sea using the common cuttlefish Sepia officinalis. Mol Ecol 16: 2667–2679.
[21]  Patarnello T, Volckaert FAM, Castilho R (2007) Pillars of Hercules: is the Atlantic-Mediterranean transition a phylogeographical break? Mol Ecol 16(21): 4426–4444.
[22]  Bargelloni L, Alarcon JA, Alvarez MC, Penzo E, Magoulas A, et al. (2003) Discord in the family Sparidae (Teleostei): divergent phylogeographic patterns across the Atlantic-Mediterranean divide. J Evol Biol 16: 1149–1158.
[23]  Bargelloni L, Alarcon JA, Alvarez MC, Penzo E, Magoulas A, et al. (2005) The Atlantic-Mediterranean transition: Discordant genetic patterns in two seabream species, Diplodus puntazzo(Cetti) and Diplodus sargus(L.). Mol Phylogenet Evol 36: 523–535.
[24]  Galarza JA, Carreras-Carbonell J, Macpherson E, Pascual M, Roques S, et al. (2009) The influence of oceanographic fronts and early-life-history traits on connectivity among littoral fish species. PNAS 106(5): 1473–1478.
[25]  Smith FGW (1935) The development of Patella vulgata. Philos Trans R Soc Lond B Biol Sci 125: 95–125.
[26]  Dodd JM (1957) Artificial fertilisation, larval development and metamorphosis in Patella vulgata L. and Patella caerulea L. Pubblicazioni della Stazione Zoologica di Napoli 29: 172–185.
[27]  Ribeiro PMA (2008) Dispersal and connectivity of Northeastern Atlantic Patellid limpets: a multidisciplinary approach. PhD thesis, University of Southampton.
[28]  Sá-Pinto A, Alexandrino P, Branco M (2007) High genetic differentiation with no evidence of hybridisation between four limpet species (Patella spp.) revealed by allozyme loci. Sci Mar 71(4): 801–810.
[29]  Weber LI, Hawkins SJ (2005) Patella aspera and P. ulyssiponensis: genetic evidence of speciation in the North-east Atlantic. Marine Biology 147: 153–162.
[30]  Ribeiro PA, Branco M, Hawkins SJ, Santos AM (2010) Recent changes in the distribution of a marine gastropod, Patella rustica, across the Iberian Atlantic coast did not result in diminished genetic diversity or increased connectivity. J Biogeogr 37: 1782–1796.
[31]  Sá-Pinto A, Baird SJE, Pinho C, Alexandrino P, Branco MS (2010) A three-way contact zone between forms of Patella rustica in the central Mediterranean Sea. Biol J Linn Soc Lond 100: 154–169.
[32]  Fischer-Piette E, Gaillard JM (1959) Les Patelles au long des cotes Atlantiques Ibériques et Nord-Marocaines. Journal de Conchyliologie 99: 135–200.
[33]  Koufopanou V, Reid DG, Ridgway SA, Thomas RH (1999) A molecular phylogeny of the Patellid limpets (Gastropoda: Patellidae) and its implications for the origins of their antitropical distribution. Mol Phylogenet Evol 11(1): 138–156.
[34]  Sá-Pinto A, Branco MS, Harris DJ, Alexandrino P (2005) Phylogeny and phylogeography of the genus Patella based on mitochondrial DNA sequence data. J Exp Mar Biol Ecol 325: 95–110.
[35]  Sá-Pinto A, Branco M, Sayanda D, Alexandrino P (2008) Patterns of colonisation, evolution and gene flow in species of the genus Patella in the Macaronesian Islands. Mol Ecol 17: 519–532.
[36]  Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor Press, New York.
[37]  Folmer O, Black M, Hoeh W, Lutz RA, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3: 294–299.
[38]  Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 55: 945–959.
[39]  Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164 1567–1587.
[40]  Guillot G, Estoup A, Mortier F, Cosson J-F (2005) A spatial model for landscape genetics. Genetics 170: 1261–1280.
[41]  Corander J, Waldmann P, Sillanp?? M (2003) Bayesian analysis of genetic differentiation between populations. Genetics 163: 367–374.
[42]  Fisher R (1937) The wave of advance of advantageous genes. Ann Eugenics 7: 353–369.
[43]  Wright S (1943) Isolation by distance. Genetics 28: 114–138.
[44]  Womble WH (1951) Differential Systematics. Science 114(2961): 315–322.
[45]  Barton NH, Gale KS (1993) Genetic analysis of hybrid zones. In: Hybrid zones and the evolutionary process. New York: Harrison RG Oxford University Press. 13–45 p.
[46]  Manel S, Berthoud F, Bellemain E, Gaudeul M, Luikart G, et al. (2007) A new individual-based spatial approach for identifying genetic discontinuities in natural populations. Mol Ecol 16: 2031–2043.
[47]  Durand E, Jay F, Gaggiotti OE, Francois O (2009) Spatial Inference of Admixture Proportions and Secondary Contact Zones. Mol Biol Evol 26(9): 1963–1973.
[48]  Guedj B, Guillot G (2011) Estimating the location and shape of hybrid zones. Mol Ecol Resour 11(6): 1119–1123.
[49]  Corander J, Marttinen P (2006) Bayesian identification of admixture events using multilocus molecular markers. Mol Ecol 15: 2833–2843.
[50]  Corander J, Marttinen P, M?ntyniemi S (2006) A Bayesian method for identification of stock mixtures from molecular marker data. Fishery Bulletin 104(4): 550–558.
[51]  Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86: 248–249.
[52]  Szymura JM, Barton NH (1986) Genetic analysis of a hybrid zone between the fire-bellied toads, Bombina bombina and B. variegata, near Cracow in southern Poland. Evolution 40: 1141–1159.
[53]  Macholan M, Munclinger P, Sugerkova M, Dufkova P, Bimova B, et al. (2007) Genetic analysis of autosomal and x-linked markers across a mouse hybrid zone. Evolution 61: 746–771.
[54]  Barton NH, Baird SJE (1995) Analyse – an application for analysing hybrid zones. Edinburgh: Freeware. Available: http://www.biology.ed.ac.uk/archive/soft?ware/Mac/Analyse/index.html. Accessed 10 2012 November.
[55]  Wolfram Research, Inc. 2008. Mathematica, Version 7.0, Champaign, IL.
[56]  Excoffier L, Laval LG, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1: 47–50.
[57]  Adams DC (2004) Character displacement via aggressive interference in Appalachian salamanders. Ecology 85(10): 2664–2670.
[58]  Guillot G, Leblois R, Coulon A, Frantz AC (2009) Statistical methods in spatial genetics. Mol Ecol 18: 4734–4756.
[59]  Bohonak AJ (2002) IBD (Isolation By Distance): a program for analysis of isolation by distance. J Hered 93: 153–154.
[60]  Mantel N (1967) The detection of disease clustering and generalized regression approach. Cancer Res 27: 209–220.
[61]  Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41: 95–98.
[62]  Clement M, Posada D, Crandall KA (2000) Tcs : a computer program to estimate gene genealogies. Mol Ecol 9(10): 1657–1660.
[63]  Rice WR (1989) Analysing tables of statistical tests. Evolution 43: 223–225.
[64]  Kass R, Raftery AE (1995) Bayes factors. J Am Stat Assoc 90: 773–795.
[65]  Rohling EJ, Abu-Zied R, Casford JSL, Hayes A, Hoogakker BAA (2009) The marine environment: Present and Past, in: Woodward, J.C. (ed) The Physical Geography of the Mediterranean, Oxford University Press, Oxford.
[66]  Kruuk LE, Baird SJ, Gale KS, Barton NH (1999) A comparison of multilocus clines maintained by environmental adaptation or by selection against hybrids. Genetics 153(4): 1959–1971.
[67]  Barton NH, Hewitt GM (1985) Analysis of Hybrid Zones. Annu Rev Ecol Syst 16: 113–148.
[68]  Schmidt PS, Rand DM (2001) Adaptive maintenance of genetic polymorphism in an intertidal barnacle: habitat – and life-stage-specific survivorship of MPI genotypes. Evolution 55(7): 1336–1344.
[69]  Bierne N, Welch J, Loire E, Bonhomme F, David P (2011) The coupling hypothesis: why genome scans may fail to map local adaptation genes. Mol Ecol 20: 2044–2072.
[70]  Gaines SD, Lester SE, Eckert G, Kinlan BP, Sagarin R, et al.. (2009) Dispersal and Geographic Ranges in the Sea In: Witman JD, Roy K editors. Marine Macroecology. The University of Chicago Press. Chicago.
[71]  Longhurst AR (1998) Ecological geography of the sea. Academic Press
[72]  Christiaens J (1973) Révision du genre Patella (Mollusca, Gastropoda). Bulletin du Muséum National d'Histoire Naturelle (Sér 3) 182: 1305–1392.
[73]  Calderón I, Giribet G, Turon X (2008) Two markers and one history: phylogeography of the edible common sea urchin Paracentrotus lividus in the Lusitanian region. Marine Biology 154(1): 137–151.
[74]  Ramon MM, Castro JA (1997) Genetic variation in natural stocks of Sardina pilchardus (sardines) from the western Mediterranean Sea. Heredity 78: 520–528.
[75]  Ríos C, Sanz S, Saavedra C, Pe?a JB (2002) Allozyme variation in populations of scallops, Pecten jacobaeus(L.) and P. maximus(L.) (Bivalvia: Pectinidae), across the Almeria-Oran Front. J Exp Mar Biol Ecol 267: 223–244.
[76]  Pérez-Losada M, Guerra A, Carvalho GR, Sanjuan A, Shaw PW (2002) Extensive population subdivision of the cuttlefish Sepia officinalis (Mollusca: Cephalopoda) around the Iberian Peninsula indicated by microsatellite DNA variation. Heredity 89: 417–424.
[77]  Sexton JP, McIntyre PJ, Angert AL, Rice KJ (2009) Evolution and Ecology of species range limits. Annu Rev Ecol Evol Syst 40: 415–436.
[78]  Borsa P, Blanquer A, Berrebi P (1997) Genetic structure of the flounders Platichthys flesus and P. stellatusat different geographical scales. Marine Biology 129: 233–246.
[79]  Bahri-Sfar L, Lemaire C, Hassine OKB, Bonhomme F (2000) Fragmentation of sea bass populations in the western and eastern Mediterranean as revealed by microsatellite polymorphism. Proc Biol Sci 267: 929–935.
[80]  Stefanni S, Thorley JL (2003) Mitochondrial DNA phylogeography reveals the existence of an Evolutionary Significant Unit of the sand goby Pomatoschistus minutus in the Adriatic (Eastern Mediterranean). Mol Phylogenet Evol 28: 601–609.
[81]  Mattiangeli V, Ryan AW, Galvin P, Mork J, Cross TF (2003) Eastern and Western Poor Cod (Trisopterus minutuscapelanus) populations in the Mediterranean Sea: evidence from allozyme and minisatellite loci. Marine Ecology 24(4): 247–258.
[82]  Rolland JL, Bonhomme F, Lagardère F, Hassan M, Guinand B (2007) Population structure of the common sole (Soleasolea) in the Northeastern Atlantic and the Mediterranean Sea: revisiting the divide with EPIC markers. Marine Biology 151: 327–341.
[83]  Mariani S, Ketmaier V, de Matthaeis E (2002) Genetic structuring and gene flow in Cerastroderma glaucum (Bivalvia: Cardiidae): evidence from allozyme variation at different geographic scales. Marine Biology 140: 687–697.
[84]  Nikula R, V?in?l? R (2003) Phylogeography of Cerastoderma glaucum (Bivalvia: Cardiidae) across Europs: a major break in the Eastern Mediterranean. Marine Biology 143: 339–350.
[85]  Peijnenburg KTCA, Fauvelot C, Breeuwer AJ, Menken BJ (2006) Spatial and temporal genetic structure of the planktonic Sagitta setosa (Chaetognatha) in European seas as revealed by mitochondrial and nuclear DNA markers. Mol Ecol 13: 3319–3338.
[86]  Arnoud-Haond S, Migliaccio M, Diaz-Almela E, Teixeira S, van de Vliet MS, et al. (2007) Vicariance patterns in the Mediterranean Sea: east-west cleavage and low dispersal in the endemic seagrass Posidonia oceanica. J Biogeogr 34: 963–976.
[87]  Serra IA, Innocenti AM, Di Maida G, Calvo S, Migliaccio M, et al. (2010) Genetic structure in the Mediterranean seagrass Posidonia oceanica: disentangling past vicariance events from contemporary patterns of gene flow. Mol Ecol 19: 557–568.
[88]  Guerra-García JM, Corzo J, Espinosa F, García-Gómez JC (2004) Assessing habitat use of the endangered marine mollusc Patella ferruginea(Gastropoda, Patellidae) in the northern Africa: preliminary results and implications for conservation. Biol Conserv 116: 319–326.
[89]  Xavier R, Santos AM, Lima FP, Branco M (2009) Invasion or invisibility: using genetic and distributional data to investigate the alien or indigenous status of the Atlantic populations of the peracarid isopod, Stenosoma nadejda (Rezig 1989). Mol Ecol 18: 3283–3290.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133