全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Requirement of Plasminogen Binding to Its Cell-Surface Receptor α-Enolase for Efficient Regeneration of Normal and Dystrophic Skeletal Muscle

DOI: 10.1371/journal.pone.0050477

Full-Text   Cite this paper   Add to My Lib

Abstract:

Adult regenerative myogenesis is central for restoring normal tissue structure and function after muscle damage. In muscle repair after injury, as in severe myopathies, damaged and necrotic fibers are removed by infiltrating inflammatory cells and then replaced by muscle stem cells or satellite cells, which will fuse to form new myofibers. Extracellular proteolysis mediated by uPA-generated plasmin plays a critical role in controlling inflammation and satellite-cell-dependent myogenesis. α-enolase has been described as plasminogen receptor in several cell types, where it acts concentrating plasmin proteolytic activity on the cell surface. In this study, we investigated whether α-enolase plasminogen receptor plays a regulatory role during the muscular repair process. Inhibitors of α-enolase/plasminogen binding: MAb11G1 (a monoclonal antibody against α-enolase) and ε-aminocaproic acid, EACA (a lysine analogue) inhibited the myogenic abilities of satellite cells-derived myoblasts. Furthermore, knockdown of α-enolase decreased myogenic fusion of myoblasts. Injured wild-type mice and dystrophic mdx mice were also treated with MAb11G1 and EACA. These treatments had negative impacts on muscle repair impairing satellite cell functions in vitro in agreement with blunted growth of new myofibers in vivo. Furthermore, both MAb11G1 and EACA treatments impaired adequate inflammatory cell infiltration and promoted extracellular matrix deposition in vivo, which resulted in persistent degeneration. These results demonstrate the novel requirement of α-enolase for restoring homeostasis of injured muscle tissue, by controlling the pericellular localization of plasmin activity.

References

[1]  Hoffman EP, Brown JRH, Kunkel LM (1987) Dystrophin: The protein product of the duchenne muscular dystrophy locus. Cell 51: 919–928.
[2]  Bulfield G, Siller WG, Wight PAL, Moore KJ (1984) X Chromosome-linked muscular dystrophy (mdx) in the mouse. Proc Natl Acad Sci USA 81: 1189–1192.
[3]  Bae GU, Gaio U, Yang YJ, Lee HJ, Kang JS, et al. (2008) Regulation of myoblast motility and fusion by the CXCR4-associated sialomucin, CD164. J Biol Chem 283: 8301–8309.
[4]  Tidball JG (2005) Inflammatory processes in muscle injury and repair. Am J Physiol Regul Integr Comp Physiol 288: R345–R353.
[5]  Chen X, Li Y (2009) Role of matrix metalloproteinases in skeletal muscle: migration, differentiation, regeneration and fibrosis. Cell Adh Migr 3: 337–341.
[6]  Irigoyen JP, Munoz-Canoves P, Montero L, Koziczak M, Nagamine Y (1999) The plasminogen activator system: biology and regulation. Cell Mol Life Sci 56: 104–132.
[7]  Redlitz A, Fowler BJ, Plow EF, Miles LA (1995) The role of an enolase-related molecule in plasminogen binding to cells. Eur J Biochem 227: 407–415.
[8]  Miles LA, Dahlberg CM, Plescia J, Felez J, Kato K, et al. (1991) Role of cell-surface lysines in plasminogen binding to cells: identification of α-enolase as candidate plasminogen receptor. Biochemistry 30: 1682–1691.
[9]  Blasi F, Carmeliet P (2002) uPAR: a versatile signalling orchestrator. Nat Rev Mol Cell Biol 3: 932–943.
[10]  Lopez-Alemany R, Correc P, Camoin L, Burtin P (1994) Purification of the plasmin receptor from human carcinoma cells and comparison to alpha-enolase. Thromb Res 75: 371–381.
[11]  Hajjar KA, Jacovina AT, Chacko J (1994) An endothelial cell receptor for plasminogen/tissue plasminogen activator. I. Identity with annexin II. J Biol Chem 269: 21191–21197.
[12]  Herren T, Burke TA, Das R, Plow EF (2006) Identification of histone H2B as a regulated plasminogen receptor. Biochemistry 45: 9463–9474.
[13]  Pancholi V (2001) Multifunctional alpha-enolase: its role in diseases. Cell Mol Life Sci 58: 902–920.
[14]  Lluis F, Roma J, Suelves M, Parra M, Aniorte G, et al. (2001) Urokinase-dependent plasminogen activation is required for efficient skeletal muscle regeneration in vivo. Blood 97: 1703–1711.
[15]  Suelves M, Lopez-Alemany R, Lluis F, Aniorte G, Serrano E, et al. (2002) Plasmin activity is required for myogenesis in vitro and skeletal muscle regeneration in vivo. Blood 99: 2835–2844.
[16]  Suelves M, Vidal B, Ruiz V, Baeza-Raja B, Diaz-Ramos A, et al. (2005) The plasminogen activation system in skeletal muscle regeneration: antagonistic roles of urokinase-type plasminogen activator (uPA) and its inhibitor (PAI-1). Front Biosci 10: 2978–2985.
[17]  Suelves M, Vidal B, Serrano AL, Tjwa M, Roma J, et al. (2007) uPA deficiency exacerbates muscular dystrophy in MDX mice. J Cell Biol 178: 1039–1051.
[18]  Wold F (1971) Enolase in The Enzymes. (Boyer, P. D., ed) 499–538 Academic Press, New York.
[19]  Taylor JM, Davies JD, Peterson CA (1995) Regulation of the myoblast-specific expression of the human beta-enolase gene. J Biol Chem 270: 2535–2540.
[20]  Keller A, Peltzer J, Carpentier G, Horvath I, Olah J, et al. (2007) Interactions of enolase isoforms with tubulin and microtubules during myogenesis. Biochim Biophys Acta 1770: 919–926.
[21]  Merkulova T, Dehaupas M, Nevers MC, Creminon C, Alameddine HS, et al. (2000) Differential modulation of alpha, beta and gamma enolase isoforms in regenerating mouse skeletal muscle. Eur J Biochem 267: 3735–3743.
[22]  Lopez-Alemany R, Suelves M, Munoz-Canoves P (2003) Plasmin generation dependent on alpha-enolase-type plasminogen receptor is required for myogenesis,. Thromb Haemost 90: 724–733.
[23]  Lopez-Alemany R, Longstaff C, Hawley S, Mirshahi M, Fabregas P, et al. (2003) Inhibition of cell surface mediated plasminogen activation by a monoclonal antibody against alpha-enolase. Am J Hematology 72: 234–242.
[24]  Perdiguero E, Ruiz-Bonilla V, Gresh L, Hui L, Ballestar E, et al. (2007) Genetic analysis of p38 MAP kinases in myogenesis: fundamental role of p38alpha in abrogating myoblast proliferation. Embo J 26: 1245–1256.
[25]  Stein O, Dabach Y, Ben-Naim M, Hollander G, Stein Y (1993) Macrophage-conditioned medium and beta-VLDLs enhance cholesterol esterification in SMCs and HSFs by LDL receptor-mediated and other pathways. Arterioscler Thromb 13: 1350–1358.
[26]  Higuchi R, Fockle C, Dollinger G, Watson R (1993) Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology (N Y) 11: 1026–1030.
[27]  Pimorady-Esfahani A, Grounds M, McMenamin PG (1997) Macrophages and dendritic cells in normal and regenerating murine skeletal muscle. Muscle and Nerve 20: 158–166.
[28]  Wygrecka M, Marsh LM, Morty RE, Henneke I, Guenther A, et al. (2009) Enolase-1 promotes plasminogen-mediated recruitment of monocytes to the acutely inflamed lung. Blood 113: 5588–5598.
[29]  Das R, Burke T, Van Wagoner DR, Plow EF (2009) L-type calcium channel blockers exert an antiinflammatory effect by suppressing expression of plasminogen receptors on macrophages. Circ Res 105: 167–175.
[30]  Koh TJ, Bryer SC, Pucci AM, Sisson TH (2005) Mice deficient in plasminogen activator inhibitor-1 have improved skeletal muscle regeneration. Am J Physiol Cell Physiol 289: C217–223.
[31]  Munoz-Canoves P, Miralles F, Baiget M, Felez J (1997) Inhibition of urokinase-type plasminogen activator (uPA) abrogates myogenesis in vitro. Thromb Haemost 77: 526–534.
[32]  Bryer SC, Koh TJ (2007) The urokinase-type plasminogen activator receptor is not required for skeletal muscle inflammation or regeneration. Am J Physiol Regul Integr Comp Physiol 293: R1152–1158.
[33]  Zhou W, Capello M, Fredolini C, Piemonti L, Liotta LA (2009) Mass spectrometry analysis of the post-translational modifications of alpha-enolase from pancreatic ductal adenocarcinoma cells. J Proteome Res 9: 2929–2936.
[34]  Fisher BA, Plant D, Brode M, van Vollenhoven RF, Mathsson L, et al. (2011) Antibodies to citrullinated alpha-enolase peptide 1 and clinical and radiological outcomes in rheumatoid arthritis. Ann Rheum Dis 70: 1095–1098.
[35]  Montes A, Dieguez-Gonzalez R, Perez-Pampin E, Calaza M, Mera-Varela A, et al. (2011) Particular association of clinical and genetic features with autoimmunity to citrullinated alpha-enolase in rheumatoid arthritis. Arthritis Rheum 63: 654–661.
[36]  Burysek L, Syrovets T, Simmet T (2002) The serine protease plasmin triggers expression of MCP-1 and CD40 in human primary monocytes via activation of p38 MAPK and janus kinase (JAK)/STAT signaling pathways. J Biol Chem 277: 33509–33517.
[37]  Li Q, Laumonnier Y, Syrovets T, Simmet T (2007) Plasmin triggers cytokine induction in human monocyte-derived macrophages. Arterioscler Thromb Vasc Biol 27: 1383–1389.
[38]  Syrovets T, Jendrach M, Rohwedder A, Schule A, Simmet T (2001) Plasmin-induced expression of cytokines and tissue factor in human monocytes involves AP-1 and IKKbeta-mediated NF-kappaB activation. Blood 97: 3941–3950.
[39]  De Sousa LP, Brasil BS, Silva BM, Freitas MH, Nogueira SV, et al. (2005) Plasminogen/plasmin regulates c-fos and egr-1 expression via the MEK/ERK pathway. Biochem Biophys Res Commun 329: 237–245.
[40]  Sousa LP, Silva BM, Brasil BS, Nogueira SV, Ferreira PC (2005) Plasminogen/plasmin regulates alpha-enolase expression through the MEK/ERK pathway. Biochem Biophys Res Commun 337: 1065–1071.
[41]  Butterfield DA, Lange ML (2009) Multifunctional roles of enolase in Alzheimer's disease brain: beyond altered glucose metabolism. J Neurochem 111: 915–933.
[42]  Petrak J, Ivanek R, Toman O, Cmejla R, Cmejlova J, et al. (2008) Deja vu in proteomics. A hit parade of repeatedly identified differentially expressed proteins. Proteomics 8: 1744–1749.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133