Background This study aimed to compare the cytokine-mediated immune response in children submitted to primary vaccination with the YF-17D-213/77 or YF-17DD yellow fever (YF) substrains. Methods A non-probabilistic sample of eighty healthy primary vaccinated (PV) children was selected on the basis of their previously known humoral immune response to the YF vaccines. The selected children were categorized according to their YF-neutralizing antibody titers (PRNT) and referred to as seroconverters (PV-PRNT+) or nonseroconverters (PV-PRNT?). Following revaccination with the YF-17DD, the PV-PRNT? children (YF-17D-213/77 and YF-17DD groups) seroconverted and were referred as RV-PRNT+. The cytokine-mediated immune response was investigated after short-term in vitro cultures of whole blood samples. The results are expressed as frequency of high cytokine producers, taking the global median of the cytokine index (YF-Ag/control) as the cut-off. Results The YF-17D-213/77 and the YF-17DD substrains triggered a balanced overall inflammatory/regulatory cytokine pattern in PV-PRNT+, with a slight predominance of IL-12 in YF-17DD vaccinees and a modest prevalence of IL-10 in YF-17D-213/77. Prominent frequency of neutrophil-derived TNF-α and neutrophils and monocyte-producing IL-12 were the major features of PV-PRNT+ in the YF-17DD, whereas relevant inflammatory response, mediated by IL-12+CD8+ T cells, was the hallmark of the YF-17D-213/77 vaccinees. Both substrains were able to elicit particular but relevant inflammatory events, regardless of the anti-YF PRNT antibody levels. PV-PRNT? children belonging to the YF-17DD arm presented gaps in the inflammatory cytokine signature, especially in terms of the innate immunity, whereas in the YF-17D-213/77 arm the most relevant gap was the deficiency of IL-12-producing CD8+T cells. Revaccination with YF-17DD prompted a balanced cytokine profile in YF-17DD nonresponders and a robust inflammatory profile in YF-17D-213/77 nonresponders. Conclusion Our findings demonstrated that, just like the YF-17DD reference vaccine, the YF-17D-213/77 seed lot induced a mixed pattern of inflammatory and regulatory cytokines, supporting its universal use for immunization.
World Health Organization. Global programme for vaccines and immunization (1998) Expanded programme on immunization. Yellow fever. Geneva. Available: http://www.who.int/vaccines-documents/Do?csPDF/www9842.pdf. Accessed 2012 Mar 6.
[3]
Santos CND, Post PR, Carvalho R, Ferreira II, Rice CM, et al. (1995) Complete nucleotide sequence of yellow fever virus vaccine strains 17DD and 17D-213. Vírus Res 35: 35–41.
[4]
Fleiss JL (1986) The design and analysis of clinical experiments. New York: John Wiley & Sons Inc. DOI: 10.1002/9781118032923.
[5]
Freestone DS (1994) Yellow fever vaccine. In: Plotkin SA, Mortimer EA, editors. Vaccines 2nd ed. Philadelphia: W.B. Saunders. pp. 741–779.
[6]
World Health Organization (1998) Requirements for yellow fever vaccine. WHO Tech Rep Ser 872: 31–68.
[7]
Monath TP, Nichols R, Archambault WT, Moore L, Marchesani R, Tian J, et al. (2002) Comparative safety and immunogenicity of two yellow fever 17D vaccines (ARILVAX and YF-VAX) in a phase III multicenter, double-blind clinical trial. Am J Trop Med Hyg 66: 533–541.
[8]
Marchevsky RS, da Luz Leal M, Homma A, Coutinho ES, Camacho LA, et al. (2006) Molecular and phenotypic analysis of a working seed lot of yellow fever virus 17DD vaccine strain produced from the secondary seed lot 102/84 with an additional passage in chicken embryos. Biologicals 34: 191–197.
[9]
Ministério da Saúde (2001) Funda??o Nacional de Saúde. Programa Nacional de Imuniza??es. Manual de Procedimentos para Vacina??o. 4a Ed. Brasília: Funda??o Nacional de Saúde. Available: http://dtr2001.saude.gov.br/svs/pub/MPV/?mpv00.htm. Accessed 2012 Mar 20.
[10]
World Health Oraganization (2007) Vaccine-preventable diseases and vaccines. In: International Travel and Health. pp. 93–145.
[11]
Centers for Disease Control and Prevention (2011) In the News Yellow Fever in Brazil: Current Situation. Available: http://wwwnc.cdc.gov/travel/notices/in-t?he-news/yellow-fever-brazil.htm. Accessed 2012 Feb 26.
[12]
Camacho LAB, Freire MS, Leal MLF, Aguiar SG, Nascimento JP, et al. (2004) Collaborative Group for the Study of Yellow Fever Vaccines. Immunogenicity of WHO-17D and Brazilian 17DD yellow fever vaccines: a randomized trial. Rev Saúde Pública 38: 671–678.
[13]
Belmusto-Worn VE, Sanchez JL, McCarthy K, Nichols R, Bautista CT, et al. (2005) Randomized, double-blind, phase III, pivotal field trial of the comparative immunogenicity, safety, and tolerability of two yellow ferver 17D vaccines (Arilvax and YF-VAX) in healthy infants and children in Peru. Am J Trop Med Hyg 72: 189–197.
[14]
Collaborative Group for Studies with Yellow Fever Vaccine (2007) Randomized, double-blind, multicenter study of the immunogenicity and reactogenicity of 17DD and WHO 17D-213/77 yellow fever vaccines in children: implications for the Brazilian National Immunization. Vaccine 25: 3118–3123.
[15]
Camacho LA, de Aguiar SG, Freire Mda S, Leal Mda L, do Nascimento JP, et al. (2005) Collaborative Group for the Study of Yellow Fever Vaccines. Reactogenicity of yellow fever vaccines in a randomized, placebo-controlled trial. Rev Saúde Pública 39: 413–420.
[16]
Stefano I, Sato HK, Pannuti CS, Omoto TM, Mann G, et al. (1999) Recent immunization against measles does not interfere with the seroresponse to yellow fever vaccine. Vaccine 17: 1042–1046.
[17]
Luiza-Silva M, Campi-Azevedo AC, Batista MA, Martins MA, Avelar RS, et al. (2011) Cytokine signatures of innate and adaptive immunity in 17DD yellow fever vaccinated children and its association with the level of neutralizing antibody. J Infect Dis 15: 873–883.
[18]
Querec T, Bennouna S, Alkan S, Laouar Y, Gorden K, et al. (2006) Yellow fever vaccine YF-17D activates multiple dendritic cell subsets via TLR2, 7, 8, and 9 to stimulate polyvalent immunity. J Exp Med 203: 413–424.
[19]
Martins MA, Silva ML, Elói-Santos SM, Ribeiro JG, Peruhype-Magalh?es V, et al. (2008) Innate immunity phenotypic features point toward simultaneous raise of activation and modulation events following 17DD live attenuated yellow fever first-time vaccination. Vaccine 26: 1173–1184.
[20]
Gaucher D, Therrien R, Kettaf N, Angermann BR, Boucher G, et al. (2008) Yellow fever vaccine induces integrated multilineage and polyfunctional immune responses. J Exp Med 205: 3119–3131.
[21]
Santos AP, Matos DC, Bertho AL, Mendon?a SC, Marcovistz R (2008) Detection of Th1/Th2 cytokine signatures in yellow fever 17DD first-time vaccinees through ELISpot assay. Cytokine 42: 152–155.
[22]
Bae HG, Domingo C, Tenorio A, de Ory F, Mu?oz J, et al. (2008) Immune response during adverse events after 17D-derived yellow fever vaccination in Europe. J Infect Dis 197: 1577–1584.
[23]
Silva ML, Espírito-Santo LR, Martins MA, Silveira-Lemos D, Peruhype- Magalha?es V, et al. (2010) Clinical and immunological insights on severe, adverse neurotropic and viscerotropic disease following 17D yellow fever vaccination. Clin Vaccine Immunol 17: 118–126.
[24]
Querec TD, Akondy RS, Lee EK, Cao W, Nakaya HI, et al. (2009) Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat Immunol 10: 116–125.
[25]
Ahmed R, Pulendran B, Ahmed R, Pulendran B (2011) Learning vaccinology from viral infections. J Exp Med 208: 2347–2349.
[26]
Wuthrich M, Filutowicz HI, Warner T, Deepe GS Jr, Klein BS (2003) Vaccine immunity to pathogenic fungi overcomes the requirement for CD4 help in exogenous antigen presentation to CD8+ T cells: implications for vaccine development in immune-deficient hosts. J Exp Med 197: 1405–1416.
[27]
Levitz SM, Golenbock DT (2012) Beyond Empiricism: Informing Vaccine Development through Innate Immunity Research. Cell 148: 1284–1292.
[28]
Neves PC, Matos DC, Marcovistz R, Galler R (2009) TLR expression and NK cell activation after human yellow fever vaccination. Vaccine 27: 5543–5549.
[29]
Akondy RS, Monson ND, Miller JD, Edupuganti S, Teuwen D, et al. (2009) The yellow fever virus vaccine induces a broad and polyfunctional human memory CD8+ T cell response. J Immunol 15: 7919–7930.
[30]
Poland JD, Calisher CH, Monath TP, Downs WG, Murphy K (1981) Persistence of neutralizing antibody 30–35 years after immunization with 17D yellow fever vaccine. Bull World Health Organ 59: 895–900.
[31]
Meyer HM Jr, Hostetler DD Jr, Bernhein BC, Rogers NG, Lambin P, et al. (1964) Response of Volta children to jet inoculation of combined live measles, smallpox and yellow fever vaccines. Bull World Health Organ 30: 783–794.
[32]
Robertson SE (1993) The Immunological Basis for Immunization. Module 8: Yellow Fever. Geneva: World Health Organization, WHO/EPI/GEN/93.18. Available: http://www.who.int/vaccines-documents/Do?csPDF-IBIe/mod8_e.pdf. Accessed 2012 Apr 4.
[33]
Georges AJ, Tible F, Meunier DMY, Gonzalez JP, Beraud AM, et al. (1985) Thermostability and efficacy in the field of a new, stabilized yellow fever virus vaccine. Vaccine 3: 313–315.
[34]
Lhuillier M, Mazzariol MJ, Zadi S, Le Cam N, Bentejac MC, et al. (1989) Study of combined vaccination against yellow fever and measles in infants from six to nine months. J Biol Stand 17: 9–15.
[35]
Mouchon D, Pignon D, Vicens R, Tu-Ha-Thanh, Tekaia F, et al. (1990) The combined measles–yellow fever vaccination in African infants aged 6 to 10 months. Bull Soc Pathol Exot 83: 537–551.