Background Mitochondrial DNA polymerase gamma (POLG1) mutations were associated with levodopa-responsive Parkinsonism. POLG1 gene contains a number of common nonsynonymous SNPs and intronic regulatory SNPs which may have functional consequences. It is of great interest to discover polymorphisms variants associated with Parkinson's disease (PD), both in isolation and in combination with specific SNPs. Materials and Methods We conducted a case-control study and genotyped twenty SNPs and poly-Q polymorphisms of POLG1 gene including in 344 Chinese sporadic PD patients and 154 healthy controls. All the polymorphisms of POLG1 we found in this study were sequenced by PCR products with dye terminator methods using an ABI-3100 sequencer. Hardy-Weinberg equilibrium and linkage disequilibrium (LD) for association between twenty POLG1 SNPs and PD were calculated using the program Haploview. Principal Results We provided evidence for strong association of four intronic SNPs of the POLG1 gene (new report: c.2070-12T>A and rs2307439: c.2070-64G>A in intron 11, P = 0.00011, OR = 1.727; rs2302084: c.3105-11T>C and rs2246900: c.3105-36A>G in intron 19, P = 0.00031, OR = 1.648) with PD. However, we did not identify any significant association between ten exonic SNPs of POLG1 and PD. Linkage disequilibrium analysis indicated that c.2070-12T>A and c.2070-64G>A could be parsed into one block as Haplotype 1 as well as c.3105-11T>C and c.3105-36A>G in Haplotype 2. In addition, case and control study on association of POLG1 CAG repeat (poly-Q) alleles with PD showed a significant association (P = 0.03, OR = 2.16) of the non-10/11Q variants with PD. Although intronic SNPs associated with PD didn't influence POLG1 mRNA alternative splicing, there was a strong association of c.2070-12T>A and c.2070-64G>A with decreased POLG1 mRNA level and protein levels. Conclusions Our findings indicate that POLG1 may play a role in the pathogenesis of PD in Chinese populations.
Davie CA (2008) A review of Parkinson's disease. Br Med Bull 86: 109–127.
[3]
Westerlund M, Hoffer B, Olson L (2010) Parkinson's disease: Exit toxins, enter genetics. Prog Neurobiol 90: 146–156.
[4]
Bereznai B, Molnar MJ (2009) [Genetics and present therapy options in Parkinson's disease: a review]. Ideggyogy Sz 62: 155–163.
[5]
Di Fonzo A, Bordoni A, Crimi M, Sara G, Del Bo R, et al. (2003) POLG mutations in sporadic mitochondrial disorders with multiple mtDNA deletions. Hum Mutat 22: 498–499.
[6]
Eerola J, Luoma PT, Peuralinna T, Scholz S, Paisan-Ruiz C, et al. (2010) POLG1 polyglutamine tract variants associated with Parkinson's disease. Neurosci Lett 477: 1–5.
[7]
Luoma PT, Eerola J, Ahola S, Hakonen AH, Hellstrom O, et al. (2007) Mitochondrial DNA polymerase gamma variants in idiopathic sporadic Parkinson disease. Neurology 69: 1152–1159.
[8]
Hudson G, Schaefer AM, Taylor RW, Tiangyou W, Gibson A, et al. (2007) Mutation of the linker region of the polymerase gamma-1 (POLG1) gene associated with progressive external ophthalmoplegia and Parkinsonism. Arch Neurol 64: 553–557.
[9]
Orsucci D, Caldarazzo Ienco E, Mancuso M, Siciliano G (2011) POLG1-related and other “mitochondrial Parkinsonisms”: an overview. J Mol Neurosci 44: 17–24.
[10]
Spelbrink JN, Toivonen JM, Hakkaart GA, Kurkela JM, Cooper HM, et al. (2000) In vivo functional analysis of the human mitochondrial DNA polymerase POLG expressed in cultured human cells. J Biol Chem 275: 24818–24828.
[11]
Graziewicz MA, Longley MJ, Copeland WC (2006) DNA polymerase gamma in mitochondrial DNA replication and repair. Chem Rev 106: 383–405.
[12]
Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, et al. (2004) Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429: 417–423.
[13]
Davidzon G, Greene P, Mancuso M, Klos KJ, Ahlskog JE, et al. (2006) Early-onset familial parkinsonism due to POLG mutations. Ann Neurol 59: 859–862.
[14]
Remes AM, Hinttala R, Karppa M, Soini H, Takalo R, et al. (2008) Parkinsonism associated with the homozygous W748S mutation in the POLG1 gene. Parkinsonism Relat Disord 14: 652–654.
[15]
Anvret A, Westerlund M, Sydow O, Willows T, Lind C, et al. (2010) Variations of the CAG trinucleotide repeat in DNA polymerase gamma (POLG1) is associated with Parkinson's disease in Sweden. Neurosci Lett 485: 117–120.
[16]
Deuschl G, Bain P, Brin M (1998) Consensus statement of the Movement Disorder Society on Tremor. Ad Hoc Scientific Committee. Mov Disord 13 Suppl 3: 2–23.
[17]
Bai RK, Wong LJ (2004) Detection and quantification of heteroplasmic mutant mitochondrial DNA by real-time amplification refractory mutation system quantitative PCR analysis: a single-step approach. Clin Chem 50: 996–1001.
[18]
Grzesiak JJ, Smith KC, Chalberg C, Truong C, Burton DW, et al. (2005) Heat shock protein-70 expressed on the surface of cancer cells binds parathyroid hormone-related protein in vitro. Endocrinology 146: 3567–3576.
[19]
Bruggenwirth HT, Boehmer AL, Ramnarain S, Verleun-Mooijman MC, Satijn DP, et al. (1997) Molecular analysis of the androgen-receptor gene in a family with receptor-positive partial androgen insensitivity: an unusual type of intronic mutation. Am J Hum Genet 61: 1067–1077.
[20]
Fujimaru M, Tanaka A, Choeh K, Wakamatsu N, Sakuraba H, et al. (1998) Two mutations remote from an exon/intron junction in the beta-hexosaminidase beta-subunit gene affect 3′-splice site selection and cause Sandhoff disease. Hum Genet 103: 462–469.
[21]
Yu C, Meng X, Zhang S, Zhao G, Hu L, et al. (2003) A 3-nucleotide deletion in the polypyrimidine tract of intron 7 of the DFNA5 gene causes nonsyndromic hearing impairment in a Chinese family. Genomics 82: 575–579.
[22]
de Almeida SF, Carmo-Fonseca M (2012) Design principles of interconnections between chromatin and pre-mRNA splicing. Trends Biochem Sci 37: 248–253.
[23]
Montes M, Becerra S, Sanchez-Alvarez M, Sune C (2012) Functional coupling of transcription and splicing. Gene 501: 104–117.
[24]
Simon-Sanchez J, Schulte C, Bras JM, Sharma M, Gibbs JR, et al. (2009) Genome-wide association study reveals genetic risk underlying Parkinson's disease. Nat Genet 41: 1308–1312.
[25]
Pankratz N, Wilk JB, Latourelle JC, DeStefano AL, Halter C, et al. (2009) Genomewide association study for susceptibility genes contributing to familial Parkinson disease. Hum Genet 124: 593–605.
[26]
Hudson G, Tiangyou W, Stutt A, Eccles M, Robinson L, et al. (2009) No association between common POLG1 variants and sporadic idiopathic Parkinson's disease. Mov Disord 24: 1092–1094.
[27]
Moyer RA, Wang D, Papp AC, Smith RM, Duque L, et al. (2011) Intronic polymorphisms affecting alternative splicing of human dopamine D2 receptor are associated with cocaine abuse. Neuropsychopharmacology 36: 753–762.
[28]
Wang D, Guo Y, Wrighton SA, Cooke GE, Sadee W (2011) Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs. Pharmacogenomics J 11: 274–286.
[29]
Desmet FO, Hamroun D, Lalande M, Collod-Beroud G, Claustres M, et al. (2009) Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res 37: e67.
[30]
Rigo F, Martinson HG (2008) Functional coupling of last-intron splicing and 3′-end processing to transcription in vitro: the poly(A) signal couples to splicing before committing to cleavage. Mol Cell Biol 28: 849–862.
[31]
Michlewski G, Sanford JR, Caceres JF (2008) The splicing factor SF2/ASF regulates translation initiation by enhancing phosphorylation of 4E-BP1. Mol Cell 30: 179–189.