For protection from HIV-1 infection, a vaccine should elicit both humoral and cell-mediated immune responses. A novel vaccine regimen and adjuvant that induce high levels of HIV-1 Env-specific T cell and antibody (Ab) responses was developed in this study. The prime-boost regimen that used combinations of replication-competent vaccinia LC16m8Δ (m8Δ) and Sendai virus (SeV) vectors expressing HIV-1 Env efficiently produced both Env-specific CD8+ T cells and anti-Env antibodies, including neutralizing antibodies (nAbs). These results sharply contrast with vaccine regimens that prime with an Env expressing plasmid and boost with the m8Δ or SeV vector that mainly elicited cellular immunities. Moreover, co-priming with combinations of m8Δs expressing Env or a membrane-bound human CD40 ligand mutant (CD40Lm) enhanced Env-specific CD8+ T cell production, but not anti-Env antibody production. In contrast, priming with an m8Δ that coexpresses CD40Lm and Env elicited more anti-Env Abs with higher avidity, but did not promote T cell responses. These results suggest that the m8Δ prime/SeV boost regimen in conjunction with CD40Lm expression could be used as an immunization platform for driving both potent cellular and humoral immunities against pathogens such as HIV-1.
References
[1]
Mascola JR, Montefiori DC (2010) The role of antibodies in HIV vaccines. Annu Rev Immunol 28: 413–444.
[2]
Asmuth DM, Brown EL, DiNubile MJ, Sun X, del Rio C, et al. (2010) Comparative cell-mediated immunogenicity of DNA/DNA, DNA/adenovirus type 5 (Ad5), or Ad5/Ad5 HIV-1 clade B gag vaccine prime-boost regimens. J Infect Dis 201: 132–141.
[3]
Casimiro DR, Wang F, Schleif WA, Liang X, Zhang ZQ, et al. (2005) Attenuation of simian immunodeficiency virus SIVmac239 infection by prophylactic immunization with dna and recombinant adenoviral vaccine vectors expressing Gag. J Virol 79: 15547–15555.
[4]
Cox KS, Clair JH, Prokop MT, Sykes KJ, Dubey SA, et al. (2008) DNA gag/adenovirus type 5 (Ad5) gag and Ad5 gag/Ad5 gag vaccines induce distinct T-cell response profiles. J Virol 82: 8161–8171.
[5]
Vogel TU, Reynolds MR, Fuller DH, Vielhuber K, Shipley T, et al. (2003) Multispecific vaccine-induced mucosal cytotoxic T lymphocytes reduce acute-phase viral replication but fail in long-term control of simian immunodeficiency virus SIVmac239. J Virol 77: 13348–13360.
[6]
Goonetilleke N, Moore S, Dally L, Winstone N, Cebere I, et al. (2006) Induction of multifunctional human immunodeficiency virus type 1 (HIV-1)-specific T cells capable of proliferation in healthy subjects by using a prime-boost regimen of DNA- and modified vaccinia virus Ankara-vectored vaccines expressing HIV-1 Gag coupled to CD8+ T-cell epitopes. J Virol 80: 4717–4728.
[7]
Harari A, Bart PA, Stohr W, Tapia G, Garcia M, et al. (2008) An HIV-1 clade C DNA prime, NYVAC boost vaccine regimen induces reliable, polyfunctional, and long-lasting T cell responses. J Exp Med 205: 63–77.
[8]
Walker BD, Burton DR (2008) Toward an AIDS vaccine. Science 320: 760–764.
[9]
Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, Kaewkungwal J, Chiu J, et al. (2009) Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N Engl J Med 361: 2209–2220.
[10]
Aynes BF, Gilbert PB, McElrath MJ, Zolla-Pazner S, Tomaras GD, et al. (2012) Immune-correlates analysis of an HIV-1 vaccine efficacy trial. N Engl J Med 366: 1275–1286.
[11]
Gordon SN, Cecchinato V, Andresen V, Heraud JM, Hryniewicz A, et al. (2011) Smallpox vaccine safety is dependent on T cells and not B cells. J Infect Dis 203: 1043–1053.
[12]
Hashizume S, Yoshizawa H, Morita M, Suzuki K (1985). Properties of attenuated mutant of vaccinia virus, LC16m8, derived form Lister strain. In G. V. Quinnan (ed.), Vaccinia viruses as vectors for vaccine antigens. Elsevier cience Publishing Co., Amsterdam. The Neterlands: 421–428.
[13]
Kidokoro M, Tashiro M, Shida H (2005) Genetically stable and fully effective smallpox vaccine strain constructed from highly attenuated vaccinia LC16m8. Proc Natl Acad Sci U S A 102: 4152–4157.
[14]
Saito T, Fujii T, Kanatani Y, Saijo M, Morikawa S, et al. (2009) Clinical and immunological response to attenuated tissue-cultured smallpox vaccine LC16m8. JAMA 301: 1025–1033.
[15]
Suzuki H, Kidokoro M, Fofana IB, Ohashi T, Okamura T, et al. (2009) Immunogenicity of newly constructed attenuated vaccinia strain LC16m8Delta that expresses SIV Gag protein. Vaccine 27: 966–971.
[16]
Garcin D, Pelet T, Calain P, Roux L, Curran J, et al. (1995) A highly recombinogenic system for the recovery of infectious Sendai paramyxovirus from cDNA: generation of a novel copy-back nondefective interfering virus. EMBO J 14: 6087–6094.
[17]
Kato A, Kiyotani K, Sakai Y, Yoshida T, Shioda T, et al. (1997) Importance of the cysteine-rich carboxyl-terminal half of V protein for Sendai virus pathogenesis. J Virol 71: 7266–7272.
[18]
Kato A, Sakai Y, Shioda T, Kondo T, Nakanishi M, et al. (1996) Initiation of Sendai virus multiplication from transfected cDNA or RNA with negative or positive sense. Genes Cells 1: 569–579.
[19]
Slobod KS, Shenep JL, Lujan-Zilbermann J, Allison K, Brown B, et al. (2004) Safety and immunogenicity of intranasal murine parainfluenza virus type 1 (Sendai virus) in healthy human adults. Vaccine 22: 3182–3186.
[20]
Kawada M, Tsukamoto T, Yamamoto H, Iwamoto N, Kurihara K, et al. (2008) Gag-specific cytotoxic T-lymphocyte-based control of primary simian immunodeficiency virus replication in a vaccine trial. J Virol 82: 10199–10206.
[21]
Kawada M, Igarashi H, Takeda A, Tsukamoto T, Yamamoto H, et al. (2006) Involvement of multiple epitope-specific cytotoxic T-lymphocyte responses in vaccine-based control of simian immunodeficiency virus replication in rhesus macaques. J Virol 80: 1949–1958.
[22]
Gauchat JF, Mazzei G, Life P, Henchoz S, Peitsch MC, et al.. (1994) Human CD40 ligand: molecular cloning, cellular distribution and regulation of IgE synthesis. Res Immunol 145: 240–244; discussion 244–249.
Locksley RM, Killeen N, Lenardo MJ (2001) The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104: 487–501.
[25]
Gares SL, Fischer KP, Congly SE, Lacoste S, Addison WR, et al. (2006) Immunotargeting with CD154 (CD40 ligand) enhances DNA vaccine responses in ducks. Clin Vaccine Immunol 13: 958–965.
[26]
Gurunathan S, Irvine KR, Wu CY, Cohen JI, Thomas E, et al. (1998) CD40 ligand/trimer DNA enhances both humoral and cellular immune responses and induces protective immunity to infectious and tumor challenge. J Immunol 161: 4563–4571.
[27]
Liu J, Yu Q, Stone GW, Yue FY, Ngai N, et al. (2008) CD40L expressed from the canarypox vector, ALVAC, can boost immunogenicity of HIV-1 canarypox vaccine in mice and enhance the in vitro expansion of viral specific CD8+ T cell memory responses from HIV-1-infected and HIV-1-uninfected individuals. Vaccine 26: 4062–4072.
[28]
Manoj S, Griebel PJ, Babiuk LA, van Drunen Littel-van den Hurk S (2003) Targeting with bovine CD154 enhances humoral immune responses induced by a DNA vaccine in sheep. J Immunol 170: 989–996.
[29]
Mendoza RB, Cantwell MJ, Kipps TJ (1997) Immunostimulatory effects of a plasmid expressing CD40 ligand (CD154) on gene immunization. J Immunol 159: 5777–5781.
[30]
Masuta Y, Kato K, Tomihara K, Nakamura K, Sasaki K, et al. (2007) Gene transfer of noncleavable cell surface mutants of human CD154 induces the immune response and diminishes systemic inflammatory reactions. J Immunother 30: 694–704.
[31]
Niwa H, Yamamura K, Miyazaki J (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108: 193–199.
[32]
Tokui M, Takei I, Tashiro F, Shimada A, Kasuga A, et al. (1997) Intramuscular injection of expression plasmid DNA is an effective means of long-term systemic delivery of interleukin-5. Biochem Biophys Res Commun 233: 527–531.
[33]
Reed SE, Staley EM, Mayginnes JP, Pintel DJ, Tullis GE (2006) Transfection of mammalian cells using linear polyethylenimine is a simple and effective means of producing recombinant adeno-associated virus vectors. J Virol Methods 138: 85–98.
[34]
Sakurai A, Yasuda J, Takano H, Tanaka Y, Hatakeyama M, et al. (2004) Regulation of human T-cell leukemia virus type 1 (HTLV-1) budding by ubiquitin ligase Nedd4. Microbes Infect 6: 150–156.
[35]
Montefiori DC (2005) Evaluating neutralizing antibodies against HIV, SIV, and SHIV in luciferase reporter gene assays. Curr Protoc Immunol Chapter 12: Unit 12 11.
[36]
Mackett M, Smith GL, Moss B (1982) Vaccinia virus: a selectable eukaryotic cloning and expression vector. Proc Natl Acad Sci U S A 79: 7415–7419.
[37]
Shida H (1986) Nucleotide sequence of the vaccinia virus hemagglutinin gene. Virology 150: 451–462.
[38]
Shida H, Tochikura T, Sato T, Konno T, Hirayoshi K, et al. (1987) Effect of the recombinant vaccinia viruses that express HTLV-I envelope gene on HTLV-I infection. EMBO J 6: 3379–3384.
[39]
Shida H, Matsumoto S (1983) Analysis of the hemagglutinin glycoprotein from mutants of vaccinia virus that accumulates on the nuclear envelope. Cell 33: 423–434.
[40]
Jin NY, Funahashi S, Shida H (1994) Constructions of vaccinia virus A-type inclusion body protein, tandemly repeated mutant 7.5 kDa protein, and hemagglutinin gene promoters support high levels of expression. Arch Virol 138: 315–330.
[41]
Li HO, Zhu YF, Asakawa M, Kuma H, Hirata T, et al. (2000) A cytoplasmic RNA vector derived from nontransmissible Sendai virus with efficient gene transfer and expression. J Virol 74: 6564–6569.
[42]
Liu L, Zhong Q, Tian T, Dubin K, Athale SK, et al. (2010) Epidermal injury and infection during poxvirus immunization is crucial for the generation of highly protective T cell-mediated immunity. Nat Med 16: 224–227.
[43]
Li M, Gao F, Mascola JR, Stamatatos L, Polonis VR, et al. (2005) Human immunodeficiency virus type 1 env clones from acute and early subtype B infections for standardized assessments of vaccine-elicited neutralizing antibodies. J Virol 79: 10108–10125.
[44]
Haase AT (2010) Targeting early infection to prevent HIV-1 mucosal transmission. Nature 464: 217–223.
[45]
McElrath MJ, Haynes BF (2010) Induction of immunity to human immunodeficiency virus type-1 by vaccination. Immunity 33: 542–554.
[46]
McMichael AJ, Borrow P, Tomaras GD, Goonetilleke N, Haynes BF (2010) The immune response during acute HIV-1 infection: clues for vaccine development. Nat Rev Immunol 10: 11–23.
[47]
Amara RR, Villinger F, Altman JD, Lydy SL, O'Neil SP, et al. (2001) Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine. Science 292: 69–74.
[48]
Barouch DH, Liu J, Li H, Maxfield LF, Abbink P, et al. (2012) Vaccine protection against acquisition of neutralization-resistant SIV challenges in rhesus monkeys. Nature 482: 89–93.
[49]
Yu S, Feng X, Shu T, Matano T, Hasegawa M, et al. (2008) Potent specific immune responses induced by prime-boost-boost strategies based on DNA, adenovirus, and Sendai virus vectors expressing gag gene of Chinese HIV-1 subtype B. Vaccine. 26: 6124–6131.
[50]
Brown SA, Surman SL, Sealy R, Jones BG, Slobod KS, et al. (2010) Heterologous prime-boost HIV-1 vaccine regimens in pre-clinical and clinical trials. Viruses 2: 435–467.
[51]
Carter D, Reed SG (2010) Role of adjuvants in modeling the immune response. Curr Opin HIV AIDS 5: 409–413.
[52]
Evans TG, McElrath MJ, Matthews T, Montefiori D, Weinhold K, et al. (2001) QS-21 promotes an adjuvant effect allowing for reduced antigen dose during HIV-1 envelope subunit immunization in humans. Vaccine 19: 2080–2091.
[53]
Longhi MP, Trumpfheller C, Idoyaga J, Caskey M, Matos I, et al. (2009) Dendritic cells require a systemic type I interferon response to mature and induce CD4+ Th1 immunity with poly IC as adjuvant. J Exp Med 206: 1589–1602.
[54]
McElrath MJ (1995) Selection of potent immunological adjuvants for vaccine construction. Semin Cancer Biol 6: 375–385.
[55]
Walker LM, Huber M, Doores KJ, Falkowska E, Pejchal R, et al. (2011) Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature 477: 466–470.
[56]
Walker LM, Phogat SK, Chan-Hui PY, Wagner D, Phung P, et al. (2009) Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science 326: 285–289.
[57]
Wu X, Yang ZY, Li Y, Hogerkorp CM (2010) Schief WR, et al (2010) Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science 329: 856–861.
[58]
Lynch RM, Tran L, Louder MK, Schmidt SD, Cohen M, et al. (2012) The Development of CD4 Binding Site Antibodies During HIV-1 Infection. J Virol 86: 4394–4403.
[59]
Moore PL, Gray ES, Sheward D, Madiga M, Ranchobe N, et al. (2011) Potent and broad neutralization of HIV-1 subtype C by plasma antibodies targeting a quaternary epitope including residues in the V2 loop. J Virol 85: 3128–3141.