全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Effects of a Novel Bradykinin B1 Receptor Antagonist and Angiotensin II Receptor Blockade on Experimental Myocardial Infarction in Rats

DOI: 10.1371/journal.pone.0051151

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background The aim of the present study was to evaluate the cardiovascular effects of the novel bradykinin B1 receptor antagonist BI-113823 following myocardial infarction (MI) and to determine whether B1 receptor blockade alters the cardiovascular effects of an angiotensin II type 1 (AT1) receptor antagonist after MI in rats. Methodology/Principal Findings Sprague Dawley rats were subjected to permanent occlusion of the left descending coronary artery. Cardiovascular function was determined at 7 days post MI. Treatment with either B1 receptor antagonist (BI-113823) or AT1 receptor antagonist (irbesartan) alone or in combination improved post-MI cardiac function as evidenced by attenuation of elevated left ventricular end diastolic pressure (LVEDP); greater first derivative of left ventricular pressure (± dp/dt max), left ventricle ejection fraction, fractional shorting, and better wall motion; as we as reductions in post-MI up-regulation of matrix metalloproteinases 2 (MMP-2) and collagen III. In addition, the cardiac up-regulation of B1 receptor and AT1 receptor mRNA were markedly reduced in animals treated with BI 113823, although bradykinin B2 receptor and angiotensin 1 converting enzyme (ACE1) mRNA expression were not significantly affected by B1 receptor blockade. Conclusions/Significance The present study demonstrates that treatment with the novel B1 receptor antagonist, BI-113823 improves post-MI cardiac function and does not influence the cardiovascular effects of AT1 receptor antagonist following MI.

References

[1]  Tsch?pe C, Heringer-Walther S, Walther T (2000) Regulation of the kinin receptors after induction of myocardial infarction: a mini-review. Braz J Med Biol Res. 33(6): 701–8.
[2]  Leeb-Lundberg LM, Marceau F, Muller-Esterl W, Pettibone DJ, Zuraw BL (2005) International union of pharmacology. XLV. Classification of the kinin receptor family: from molecular mechanisms to pathophysiological consequences. Pharmacol Rev. 57: 27–77.
[3]  Golias Ch, Charalabopoulos A, Stagikas D, Charalabopoulos K, Batistatou A (2007) The kinin system–bradykinin: biological effects and clinical implications. Multiple role of the kinin system–bradykinin. Hippokratia. 11(3): 124–8.
[4]  Minshall RD, Nakamura F, Becker RP, Rabito SF (1995) Characterization of bradykinin B2 receptors in adult myocardium and neonatal rat cardiomyocytes. Circ Res. 76(5): 773–80.
[5]  Maestri R, Milia AF, Salis MB, Graiani G, Lagrasta C, et al. (2003) Cardiac hypertrophy and microvascular deficit in kinin B2 receptor knockout mice. Hypertension. 41(5): 1151–5.
[6]  Su JB (2006) Kinins and cardiovascular diseases. Curr Pharm Des. 12(26): 3423–35.
[7]  Xu J, Carretero OA, Shesely EG, Rhaleb NE, Yang JJ, et al. (2009) The kinin B1 receptor contributes to the cardioprotective effect of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers in mice. Exp Physiol. 94(3): 322–9.
[8]  Lagneux C, Bader M, Pesquero JB, Demenge P, Ribuot C (2002) Detrimental implication of B1 receptors in myocardial ischemia: evidence from pharmacological blockade and gene knockout mice. Int Immunopharmacol. 2(6): 815–22.
[9]  Yin H, Chao J, Bader M, Chao L (2007) Differential role of kinin B1 and B2 receptors in ischemia-induced apoptosis and ventricular remodeling. Peptides. 28(7): 1383–9.
[10]  Westermann D, Lettau O, Sobirey M, Riad A, Bader M, et al. (2008) Doxorubicin cardiomyopathy-induced inflammation and apoptosis are attenuated by gene deletion of the kinin B1 receptor. Biol Chem. 2008 389(6): 713–8.
[11]  Doods H, Hauel N, Kirsten A, Kramer G, Ceci A (2012) BI 113823, a novel B1 receptor antagonist exhibiting antinociceptive properties in inflammatory pain models. Pain Practice. 12: 18.
[12]  Berthonneche C, Sulpice T, Tanguy S, O’Connor S, Herbert JM, et al. (2005) AT1 receptor blockade prevents cardiac dysfunction after myocardial infarction in rats. Cardiovasc Drugs Ther. 19(4): 251–9.
[13]  Schiller NB, Shah PM, Crawford M, DeMaria A, Devereux R, et al. (1989) Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms. J Am Soc Echocardiogr. 2(5): 358–67.
[14]  Wu D, Qi J (2012) Mechanisms of the beneficial effect of NHE1 inhibitor in traumatic hemorrhage: inhibition of inflammatory pathways. Resuscitation 83(6): 774–81.
[15]  Hashimoto K, Hamamoto H, Honda Y, Hirose M, Furukawa S, et al. (1978) Changes in components of kinin system and hemodynamics in acute myocardial infarction. Am Heart J. 95(5): 619–26.
[16]  Cyr M, Eastlund T, Blais C Jr, Rouleau JL, Adam A (2001) Bradykinin metabolism and hypotensive transfusion reactions. Transfusion. 41(1): 136–50.
[17]  Beny JL, Brunet P, Huggel H (1987) Interaction of bradykinin and des-Arg9-bradykinin with isolated pig coronary arteries: mechanical and electrophysiological events. Regul Pept. 17(4): 181–90.
[18]  Guimar?es JA, Vieira MA, Camargo MJ, Maack T (1986) Renal vasoconstrictive effect of kinins mediated by B1-kinin receptors. Eur J Pharmacol. 130(3): 177–85.
[19]  Whalley ET, Fritz H, Geiger R (1983) Kinin receptors and angiotensin converting enzyme in rabbits basilar arteries. Naunyn Schmiedebergs Arch Pharmacol. 324(4): 296–301.
[20]  Whitehurst RM, Laskey R, Goldberg RN, Herbert D, Van Breemen C (1999) Influence of group B streptococci on piglet pulmonary artery response to bradykinin. J Appl Physiol. 86(1): 61–5.
[21]  Vianna RM, Ongali B, Regoli D, Calixto JB, Couture R (2003) Up-regulation of kinin B1 receptor in the lung of streptozotocin-diabetic rat: autoradiographic and functional evidence. Br J Pharmacol. 138(1): 13–22.
[22]  Madeddu P, Emanueli C, Maestri R, Salis MB, Minasi A, et al. (2000) Angiotensin II type 1 receptor blockade prevents cardiac remodeling in bradykinin B(2) receptor knockout mice. Hypertension. 35(1 Pt 2): 391–6.
[23]  Tanaka Y, Nagai M, Date T, Okada T, Abe Y, et al. (2004) Effects of bradykinin on cardiovascular remodeling in renovascular hypertensive rats. Hypertens Res. 27(11): 865–75.
[24]  Klein J, Gonzalez J, Decramer S, Bandin F, Neau E, et al. (2010) Blockade of the kinin B1 receptor ameloriates glomerulonephritis. J Am Soc Nephrol. 21(7): 1157–64.
[25]  Westermann D, Walther T, Savvatis K, Escher F, Sobirey M, et al. (2009) Gene deletion of the kinin receptor B1 attenuates cardiac inflammation and fibrosis during the development of experimental diabetic cardiomyopathy. Diabetes. 58(6): 1373–81.
[26]  Austinat M, Braeuninger S, Pesquero JB, Brede M, Bader M, et al. (2009) Blockade of bradykinin receptor B1 but not bradykinin receptor B2 provides protection from cerebral infarction and brain edema. Stroke. 40(1): 285–93.
[27]  Wang PH, Campanholle G, Cenedeze MA, Feitoza CQ, Gon?alves GM, et al. (2008) Bradykinin [corrected] B1 receptor antagonism is beneficial in renal ischemia-reperfusion injury. PLoS One. 2008 3(8): e3050.
[28]  Masutomo K, Makino N, Sugano M, Miyamoto S, Hata T, et al. (1999) Extracellular matrix regulation in the development of Syrian cardiomyopathic Bio 14.6 and Bio 53.58 hamsters. J Mol Cell Cardiol. 31(9): 1607–15.
[29]  Sun Y, Kiani MF, Postlethwaite AE, Weber KT (2002) Infarct scar as living tissue. Basic Res Cardiol. 97(5): 343–7.
[30]  Yokoyama T, Nakano M, Bednarczyk JL, McIntyre BW, Entman M, et al. (1997) Tumor necrosis factor-alpha provokes a hypertrophic growth response in adult cardiac myocytes. Circulation. 95(5): 1247–52.
[31]  Bradham WS, Bozkurt B, Gunasinghe H, Mann D, Spinale FG (2002) Tumor necrosis factor-alpha and myocardial remodeling in progression of heart failure: a current perspective. Cardiovasc Res. 53(4): 822–30.
[32]  Erd?s EG, Tan F, Skidgel RA (2010) Angiotensin I-converting enzyme inhibitors are allosteric enhancers of kinin B1 and B2 receptor function. Hypertension. 55(2): 214–20.
[33]  Kuhr F, Lowry J, Zhang Y, Brovkovych V, Skidgel RA (2010) Differential regulation of inducible and endothelial nitric oxide synthase by kinin B1 and B2 receptors. Neuropeptides. 44(2): 145–54.
[34]  Stauss HM, Zhu YC, Redlich T, Adamiak D, Mott A, et al. (1994) Angiotensin-converting enzyme inhibition in infarct-induced heart failure in rats: bradykinin versus angiotensin II. J Cardiovasc Risk. 1(3): 255–62.
[35]  Yang XP, Liu YH, Mehta D, Cavasin MA, Shesely E, et al. (2001) Diminished cardioprotective response to inhibition of angiotensin-converting enzyme and angiotensin II type 1 receptor in B(2) kinin receptor gene knockout mice. Circ Res. 88(10): 1072–9.
[36]  Tsch?pe C, Spillmann F, Altmann C, Koch M, Westermann D, et al. (2004) The bradykinin B1 receptor contributes to the cardioprotective effects of AT1 blockade after experimental myocardial infarction. Cardiovasc Res. 61(3): 559–69.
[37]  Gera L, Stewart JM, Fortin JP, Morissette G, Marceau F (2008) Structural modification of the highly potent peptide bradykinin B1 receptor antagonist B9958. Int Immunopharmacol. 8(2): 289–92.
[38]  MacNeil T, Feighner S, Hreniuk DL, Hess JF, Van der Ploeg LH (1997) Partial agonists and full antagonists at the human and murine bradykinin B1 receptors. Can J Physiol Pharmacol. 75(6): 735–40.
[39]  Emanueli C, Madeddu P (2004) Angiogenesis therapy with human tissue kallikrein for the treatment of ischemic diseases. Arch Mal Coeur Vaiss. 97(6): 679–687.
[40]  Savvatis K, Westermann D, Schultheiss HP, Tsch?pe C (2010) Kinins in cardiac inflammation and regeneration: insights from ischemic and diabetic cardiomyopathy. Neuropeptides. 44(2): 119–125.
[41]  Emanueli C, Salis MB, Stacca T, Gaspa L, Chao J, et al. (2001) Rescue of impaired angiogenesis in spontaneously hypertensive rats by intramuscular human tissue kallikrein gene transfer. Hypertension. 38(1): 136–141.
[42]  Emanueli C, Bonaria Salis M, Stacca T, Pintus G, Kirchmair R, et al. (2002) Targeting kinin B(1) receptor for therapeutic neovascularization. Circulation. 22 105(3): 360–366.
[43]  Kr?nkel N, Katare RG, Siragusa M, Barcelos LS, Campagnolo P, et al. (2008) Role of kinin B2 receptor signaling in the recruitment of circulating progenitor cells with neovascularization potential. Circ Res. 103(11): 1335–43.
[44]  Parenti A, Morbidelli L, Ledda F, Granger HJ, Ziche M (2001) The bradykinin/B1 receptor promotes angiogenesis by up-regulation of endogenous FGF-2 in endothelium via the nitric oxide synthase pathway. FASEB J. 15(8): 1487–1489.
[45]  Emanueli C, Salis MB, Van Linthout S, Meloni M, Desortes E, et al. (2004) Akt/protein kinase B and endothelial nitric oxide synthase mediate muscular neovascularization induced by tissue kallikrein gene transfer. Circulation. 110(12): 1638–44.
[46]  Stone OA, Richer C, Emanueli C, van Weel V, Quax PH, et al. (2009) Critical role of tissue kallikrein in vessel formation and maturation: implications for therapeutic revascularization. Arterioscler Thromb Vasc Biol. 29(5): 657–64.
[47]  Spinetti G, Fortunato O, Cordella D, Portararo P, Kr?nkel N, et al. (2011) Tissue kallikrein is essential for invasive capacity of circulating proangiogenic cells. Circ Res. 108(3): 284–93.
[48]  Spillmann F, Graiani G, Van Linthout S, Meloni M, Campesi I, et al. (2006) Regional and global protective effects of tissue kallikrein gene delivery to the peri-infarct myocardium. Regen Med. 1(2): 235–54.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133