Food materials designated as “Generally Recognized as Safe” (GRAS) are attracting the attention of researchers in their attempts to systematically identify compounds with putative health-related benefits. In particular, there is currently a great deal of interest in exploring possible secondary benefits of flavor ingredients, such as those relating to health and wellness. One step in this direction is the comprehensive characterization of the chemical structures contained in databases of flavoring substances. Herein, we report a comprehensive analysis of the recently updated FEMA GRAS list of flavoring substances (discrete chemical entities only). Databases of natural products, approved drugs and a large set of commercial molecules were used as references. Remarkably, natural products continue to be an important source of bioactive compounds for drug discovery and nutraceutical purposes. The comparison of five collections of compounds of interest was performed using molecular properties, rings, atom counts and structural fingerprints. It was found that the molecular size of the GRAS flavoring substances is, in general, smaller cf. members of the other databases analyzed. The lipophilicity profile of the GRAS database, a key property to predict human bioavailability, is similar to approved drugs. Several GRAS chemicals overlap to a broad region of the property space occupied by drugs. The GRAS list analyzed in this work has high structural diversity, comparable to approved drugs, natural products and libraries of screening compounds. This study represents one step towards the use of the distinctive features of the flavoring chemicals contained in the GRAS list and natural products to systematically search for compounds with potential health-related benefits.
References
[1]
Harvey AL (2008) Natural products in drug discovery. Drug Discov Today 13: 894–901.
[2]
Harvey AL, Clark RL, Mackay SP, Johnston BF (2010) Current strategies for drug discovery through natural products. Expert Opin Drug Discov 5: 559–568.
[3]
Burdock GA (2003) The GRAS process. Food Technol 57: 17–17.
[4]
Burdock GA, Carabin IG (2004) Generally recognized as safe (GRAS): History and description. Toxicol Lett 150: 3–18.
[5]
Burdock GA, Carabin IG, Griffiths JC (2006) The importance of GRAS to the functional food and nutraceutical industries. Toxicology 221: 17–27.
[6]
Scalbert A, Andres-Lacueva C, Arita M, Kroon P, Manach C, et al. (2011) Databases on food phytochemicals and their health-promoting effects. J Agric Food Chem 59: 4331–4348.
[7]
Barbosa AJM, Del Rio A (2012) Freely accessible databases of commercial compounds for high- throughput virtual screenings. Curr Top Med Chem 12: 866–877.
[8]
López-Vallejo F, Peppard TL, Medina-Franco JL, Martínez-Mayorga K (2011) Computational methods for the discovery of mood disorder therapies. Expert Opin Drug Discov 6: 1227–1245.
[9]
Sprous DG, Salemme FR (2007) A comparison of the chemical properties of drugs and FEMA/FDA notified GRAS chemical compounds used in the food industry. Food Chem Toxicol 45: 1419–1427.
[10]
Martínez-Mayorga K, Peppard TL, Yongye AB, Santos R, Giulianotti M, et al. (2011) Characterization of a comprehensive flavor database. J Chemom 25: 550–560.
[11]
Dandapani S, Marcaurelle LA (2010) Accessing new chemical space for ‘undruggable’ targets. Nat Chem Biol 6: 861–863.
[12]
López-Vallejo F, Giulianotti MA, Houghten RA, Medina-Franco JL (2012) Expanding the medicinally relevant chemical space with compound libraries. Drug Discov Today 17: 718–726.
[13]
López-Vallejo F, Caulfield T, Martínez-Mayorga K, Giulianotti MA, Nefzi A, et al. (2011) Integrating virtual screening and combinatorial chemistry for accelerated drug discovery. Comb Chem High Throughput Screening 14: 475–487.
[14]
Medina-Franco JL, López-Vallejo F, Kuck D, Lyko F (2011) Natural products as DNA methyltransferase inhibitors: A computer-aided discovery approach. Mol Diversity 15: 293–304.
[15]
Andreoli F, Barbosa AJM, Parenti MD, Del Rio A (2013) Modulation of epigenetic targets for anticancer therapy: Clinicopathological relevance, structural data and drug discovery perspectives. Curr Pharm Des: in press.
[16]
Yongye AB, Waddell J, Medina-Franco JL (2012) Molecular scaffold analysis of natural products databases in the public domain. Chem Biol Drug Des 80: 717–724.
[17]
Medina-Franco JL (2012) Interrogating novel areas of chemical space for drug discovery using chemoinformatics. Drug Dev Res: in press. doi: 10.1002/ddr.21034.
[18]
Henkel T, Brunne RM, Müller H, Reichel F (1999) Statistical investigation into the structural complementarity of natural products and synthetic compounds. Angew Chem Int Ed 38: 643–647.
[19]
Feher M, Schmidt JM (2003) Property distributions: Differences between drugs, natural products, and molecules from combinatorial chemistry. J Chem Inf Comput Sci 43: 218–227.
[20]
Ertl P, Roggo S, Schuffenhauer A (2008) Natural product-likeness score and its application for prioritization of compound libraries. J Chem Inf Model 48: 68–74.
[21]
Singh N, Guha R, Giulianotti MA, Pinilla C, Houghten RA, et al. (2009) Chemoinformatic analysis of combinatorial libraries, drugs, natural products, and molecular libraries small molecule repository. J Chem Inf Model 49: 1010–1024.
[22]
Yoo J, Medina-Franco JL (2011) Chemoinformatic approaches for inhibitors of DNA methyltransferases: Comprehensive characterization of screening libraries. Comp Mol Biosci 1: 7–16 Available: http://www.scirp.org/journal/PaperInform?ation.aspx?paperID=16496&publishStatus=1?6492#abstract.
[23]
Clemons PA, Wilson JA, Dancik V, Muller S, Carrinski HA, et al. (2011) Quantifying structure and performance diversity for sets of small molecules comprising small-molecule screening collections. Proc Natl Acad Sci USA 108: 6817–6822.
Peppard TL, Le M, Pandya RN. Prediction tool for modern flavor development. In: Hofmann T, Meyerhof W, Schieberle P, editors; 2008; Garching, Germany. Deutsche Forschungsanstalt für Lebensmittelchemie. 374–378.
[26]
Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, et al. (2008) DrugBank: A knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res 36: D901–D906.
[27]
Specs. http://ww.specs.net/(accessed August 2012).
[28]
Molecular Operating Environment (MOE), version 2011.10; Chemical Computing Group Inc.: Montreal, Quebec, Canada. 2011.
[29]
Canvas, version 1.5; Schr?dinger, LLC, New York, NY, 2012.
[30]
Duan J, Dixon SL, Lowrie JF, Sherman W (2010) Analysis and comparison of 2D fingerprints: Insights into database screening performance using eight fingerprint methods. J Mol Graph Model 29: 157–170.
[31]
López-Vallejo F, Nefzi A, Bender A, Owen JR, Nabney IT, et al. (2011) Increased diversity of libraries from libraries: Chemoinformatic analysis of bis-diazacyclic libraries. Chem Biol Drug Des 77: 328–342.
[32]
Bickerton GR, Paolini GV, Besnard J, Muresan S, Hopkins AL (2012) Quantifying the chemical beauty of drugs. Nat Chem 4: 90–98.
[33]
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Delivery Rev 23: 3–25.
[34]
Ganesan A (2008) The impact of natural products upon modern drug discovery. Curr Opin Chem Biol 12: 306–317.
[35]
Ritchie TJ, Macdonald SJF (2009) The impact of aromatic ring count on compound developability - are too many aromatic rings a liability in drug design? Drug Discov Today 14: 1011–1020.
[36]
Ritchie TJ, Macdonald SJF, Young RJ, Pickett SD (2011) The impact of aromatic ring count on compound developability: Further insights by examining carbo- and hetero-aromatic and -aliphatic ring types. Drug Discov Today 16: 164–171.
[37]
Lachance H, Wetzel S, Kumar K, Waldmann H (2012) Charting, navigating, and populating natural product chemical space for drug discovery. J Med Chem 55: 5989–6001.
[38]
Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf Model 50: 742–754.
[39]
Medina-Franco JL, Martínez-Mayorga K, Giulianotti MA, Houghten RA, Pinilla C (2008) Visualization of the chemical space in drug discovery. Curr Comput Aided Drug Des 4: 322–333.
[40]
Yongye A, Byler K, Santos R, Martínez-Mayorga K, Maggiora GM, et al. (2011) Consensus models of activity landscapes with multiple chemical, conformer and property representations. J Chem Inf Model 51: 1259–1270.
[41]
Jaccard P (1901) Etude comparative de la distribution florale dans une portion des alpes et des jura. Bull Soc Vaudoise Sci Nat 37: 547–579.
Agrafiotis DK (2001) A constant time algorithm for estimating the diversity of large chemical libraries. J Chem Inf Comput Sci 41: 159–167.
[44]
Pérez-Villanueva J, Santos R, Hernández-Campos A, Giulianotti MA, Castillo R, et al. (2010) Towards a systematic characterization of the antiprotozoal activity landscape of benzimidazole derivatives. Bioorg Med Chem 18: 7380–7391.
[45]
Bonachera F, Marcou G, Kireeva N, Varnek A, Horvath D (2012) Using self-organizing maps to accelerate similarity search. Bioorg Med Chem 20: 5396–5409.
[46]
Caporuscio F, Rastelli G, Imbriano C, Del Rio A (2011) Structure-based design of potent aromatase inhibitors by high-throughput docking. J Med Chem 54: 4006–4017.
[47]
Del Rio A, Barbosa AJM, Caporuscio F, Mangiatordi GF (2010) CoCoCo: A free suite of multiconformational chemical databases for high-throughput virtual screening purposes. Mol Biosyst 6: 2122–2128.
[48]
Sanders MPA, Barbosa AJM, Zarzycka B, Nicolaes GAF, Klomp JPG, et al. (2012) Comparative analysis of pharmacophore screening tools. J Chem Inf Model 52: 1607–1620.
[49]
Rognan D (2010) Structure-based approaches to target fishing and ligand profiling. Mol Inf 29: 176–187.
[50]
Martínez-Mayorga K, Medina-Franco JL, Organizers (2013) FoodInformatics: Applications of chemical information to food chemistry. Division of Chemical Information. 245th ACS National Meeting, New Orleans, LI, United States. New Orleans, LI, United States: American Chemical Society, Washington, D. C.