[1] | Powers DA (1989) Fish as model systems. Science 246: 352–358.
|
[2] | Powers DA, Schulte PM (1998) Evolutionary adaptations of gene structure and expression in natural populations in relation to a changing environment: a multidisciplinary approach to address the million-year saga of a small fish. J Exp Zool 282: 71–94.
|
[3] | Hochachka PW, Somero GN (2002) Biochemical adaptation: mechanism and process in physiological evolution. New York, NY: Oxford University Press. 480 p.
|
[4] | Park H, Park IY, Kim E, Youn B, Fields K, et al. (2004) Comparing skeletal and cardiac calsequestrin structures and their calcium binding: a proposed mechanism for coupled calcium binding and protein polymerization. J Biol Chem 279: 18026–18033.
|
[5] | MacLennan DH, Wong PTS (1971) Isolation of a calcium-sequestering protein from sarcoplasmic reticulum. Proc Natl Acad Sci U S A 68: 1231–1235.
|
[6] | Ikemoto N, Bhatnagar GM, Nagy B, Gergely J (1972) Interaction of divalent cations with the 55,000-dalton protein component of the sarcoplasmic reticulum. J Biol Chem 247: 7835–7837.
|
[7] | Cozens B, Reithmeier RAF (1984) Size and shape of rabbit skeletal muscle calsequestrin. J Biol Chem 259: 6248–6252.
|
[8] | Franzini-Armstrong C, Kenney LJ, Varriano-Marston E (1987) The structure of calsequestrin in triads of vertebrate skeletal muscle: a deep etch study. J Cell Biol 105: 49–56.
|
[9] | Rudolf R, Magalh?es PJ, Pozzan T (2006) Direct in vivo monitoring of sarcoplasmic reticulum Ca2+ and cytoplasmic cAMP dynamics in mouse skeletal muscle. J Cell Biol 173: 187–193.
|
[10] | Canato M, Scorzeto M, Giacomello M, Protasi F, Reggiani C, et al. (2010) Massive alterations of sarcoplasmic reticulum free calcium in skeletal muscle fibers lacking calsequestrin revealed by a genetically encoded probe. Proc Natl Acad Sci U S A 107: 22326–22331.
|
[11] | Royer L, Ríos E (2009) Deconstructing calsequestrin. Complex buffering in the calcium store of skeletal muscle. J Physiol 587: 3101–3111.
|
[12] | Beard NA, Laver DR, Dulhunty AF (2004) Calsequestrin and the calcium release channel of skeletal and cardiac muscle. Prog Biophys Mol Biol 85: 33–69.
|
[13] | Ríos E, Launikonis BS, Royer L, Brum G, Zho J (2006) The elusive role of store depletion in the control of intracellular calcium release. J Muscle Res Cell Motil 27: 337–350.
|
[14] | Hasenfuss G, Reinecke H, Studer R, Pieske B, Meyer M, et al. (1996) Calcium cycling proteins and force-frequency relationship in heart failure. Basic Res Cardiol 91 Suppl 217–22.
|
[15] | Paolini C, Quarta M, Nori A, Boncompagni S, Canato M, et al. (2007) Reorganized stores and impaired calcium handling in skeletal muscle of mice lacking calsequestrin-1. J Physiol 583: 767–784.
|
[16] | Knollmann BC (2009) New roles of calsequestrin and triadin in cardiac muscle. J Physiol 587: 3081–3087.
|
[17] | Protasi F, Paolini C, Canato M, Reggiani C, Quarta M (2011) Lessons from calsequestrin-1 ablation in vivo: much more than a Ca(2+) buffer after all. J Muscle Res Cell Motil 32: 257–270.
|
[18] | Kornyeyev D, Petrosky AD, Zepeda B, Ferreiro M, Knollmann B, et al. (2012) Calsequestrin 2 deletion shortens the refractoriness of Ca2+ release and reduces rate-dependent Ca2+-alternans in intact mouse hearts. J Mol Cell Cardiol 52: 21–31.
|
[19] | Beard NA, Sakowska MM, Dulhunty AF, Laver DR (2002) Calsequestrin is an inhibitor of skeletal muscle ryanodine receptor calcium release channels. Biophys J 82: 310–320.
|
[20] | Wei L, Varsányi M, Dulhunty AF, Beard NA (2006) The conformation of calsequestrin determines its ability to regulate skeletal ryanodine receptors. Biophys J 91: 1288–1301.
|
[21] | Wang S, Trumble WR, Liao H, Wesson CR, Dunker AK, et al. (1998) Crystal structure of calsequestrin from rabbit skeletal muscle sarcoplasmic reticulum. Nat Struct Biol 5: 476–483.
|
[22] | Sanchez EJ, Lewis KM, Danna BR, Kang C (2012) High-capacity Ca2+ binding of human skeletal calsequestrin. J Biol Chem 287: 11592–11601.
|
[23] | Park H, Wu S, Dunker AK, Kang C (2003) Polymerization of calsequestrin. Implications for Ca2+ regulation. J Biol Chem 278: 16176–16182.
|
[24] | Watabe S, Ushio H, Hashimoto K (1991) Purification and characterization of a calsequestrin-like calcium-binding protein from carp (Cyprinus carpio) sarcoplasmic reticulum. Comp Biochem Physiol B 99: 545–552.
|
[25] | Block BA, O’Brien J, Meissner G (1994) Characterization of the sarcoplasmic reticulum proteins in the thermogenic muscles of fish. J Cell Biol 127: 1275–1287.
|
[26] | Infante C, Ponce M, Manchado M (2011) Duplication of calsequestrin genes in teleosts: molecular characterization in the Senegalese sole (Solea senegalensis). Comp Biochem Physiol B Biochem Mol Biol 158: 304–314.
|
[27] | Somero GN, Low PS (1977) Eurytolerant proteins: mechanisms for extending the environmental tolerance tange of enzyme-ligand interactions. Am Nat 111: 527–538.
|
[28] | Bal NC, Sharon A, Gupta SC, Jena N, Shaikh S, et al. (2010) The catecholaminergic polymorphic ventricular tachycardia mutation R33Q disrupts the N-terminal structural motif that regulates reversible calsequestrin polymerization. J Biol Chem 285: 17188–17196.
|
[29] | Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948.
|
[30] | Cala SE, Jones LR (1983) Rapid purification of calsequestrin from cardiac and skeletal muscle sarcoplasmic reticulum vesicles by Ca2+-dependent elution from phenyl-sepharose. J Biol Chem 258: 11932–11936.
|
[31] | King LE, Morrison M (1976) The visualization of human erythrocyte membrane proteins and glycoproteins in SDS polyacrylamide gels employing a single staining procedure. Anal Biochem 71: 223–230.
|
[32] | Campbell KP, MacLennan DH, Jorgensen AO (1983) Staining of the Ca2+-binding proteins, calsequestrin, calmodulin, troponin C, and S-100, with the cationic carbocyanine dye “Stains-all”. J Biol Chem 258: 11267–11273.
|
[33] | Hidalgo C, Donoso P, Rodriguez PH (1996) Protons induce calsequestrin conformational changes. Biophys J 71: 2130–2137.
|
[34] | Goutelle S, Maurin M, Rougier F, Barbaut X, Bourguignon L, et al. (2008) The Hill equation: a review of its capabilities in pharmacological modelling. Fundam Clin Pharmacol 22: 633–648.
|
[35] | Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18: 2714–2723.
|
[36] | Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14: 33–38, 27–28.
|
[37] | Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22: 195–201.
|
[38] | The PyMOL Molecular Graphics System, Version 1.5.0.4 Schr?dinger, LLC.
|
[39] | MacKerell AD Jr, Bashford D, Dunbrack RL, Evanseck JD, Field MJ, et al. (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102: 3586–3616.
|
[40] | Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79: 926–935.
|
[41] | Bosshard HR, Marti DN, Jelesarov I (2004) Protein stabilization by salt bridges: concepts, experimental approaches and clarification of some misunderstandings. J Mol Recognit 17: 1–16.
|
[42] | Mehler EL, Eichele G (1984) Electrostatic effects in water-accessible regions of proteins. Biochemistry 23: 3887–3891.
|
[43] | Reithmeier RA, de Leon S, MacLennan DH (1980) Assembly of the sarcoplasmic reticulum. Cell-free synthesis of the Ca2++Mg2+-adenosine triphosphatase and calsequestrin. J Biol Chem 255: 11839–11846.
|
[44] | Yano K, Zarain-Herzberg A (1994) Sarcoplasmic reticulum calsequestrins: structural and functional properties. Mol Cell Biochem 135: 61–70.
|
[45] | Korajoki H, Vornanen M (2009) Expression of calsequestrin in atrial and ventricular muscle of thermally acclimated rainbow trout. J Exp Biol 212: 3403–3414.
|
[46] | Houle TD, Ram ML, Cala SE (2004) Calsequestrin mutant D307H exhibits depressed binding to its protein targets and a depressed response to calcium. Cardiovasc Res 64: 227–233.
|
[47] | Kim E, Youn B, Kemper L, Campbell C, Milting H, et al. (2007) Characterization of human cardiac calsequestrin and its deleterious mutants. J Mol Biol 373: 1047–1057.
|
[48] | Valle G, Galla D, Nori A, Priori SG, Gyorke S, et al. (2008) Catecholaminergic polymorphic ventricular tachycardia-related mutations R33Q and L167H alter calcium sensitivity of human cardiac calsequestrin. Biochem J 413: 291–303.
|
[49] | Beltrán M, Barrientos G, Hidalgo C (2006) Fast kinetics of calcium dissociation from calsequestrin. Biol Res 39: 493–503.
|
[50] | Healy TM, Tymchuk WE, Osborne EJ, Schulte PM (2010) Heat shock response of killifish (Fundulus heteroclitus): candidate gene and heterologous microarray approaches. Physiol Genomics 41: 171–184.
|
[51] | Somero GN (1975) Temperature as a selective factor in protein evolution: the adaptational strategy of “compromise”. J Exp Zool 194: 175–188.
|
[52] | Giordano A, Febbraio F, Russo C, Rossi M, Raia CA (2005) Evidence for co-operativity in coenzyme binding to tetrameric Sulfolobus solfataricus alcohol dehydrogenase and its structural basis: fluorescence, kinetic and structural studies of the wild-type enzyme and non-co-operative N249Y mutant. Biochem J 388: 657–667.
|
[53] | Reeves RB (1972) An imidazole alphastat hypothesis for vertebrate acid-base regulation: tissue carbon dioxide content and body temperature in bullfrogs. Respir Physiol 14: 219–236.
|
[54] | Moerland T, Egginton S (1998) Intracellular pH of muscle and temperature: Insight from in vivo 31P NMR measurements in a stenothermal Antarctic teleost (Harpagifer antarcticus). J Therm Biol 23: 275–282.
|
[55] | Sartoris FJ, Bock C, P?rtner HO (2003) Temperature-dependent pH regulation in eurythermal and stenothermal marine fish: an interspecies comparison using 31P-NMR. J Therm Biol 28: 363–371.
|
[56] | Grove TJ, McFadden LA, Chase PB, Moerland TS (2005) Effects of temperature, ionic strength and pH on the function of skeletal muscle myosin from a eurythermal fish, Fundulus heteroclitus. J Muscle Res Cell Motil 26: 191–197.
|
[57] | Nayeem A, Sitkoff D, Krystek S (2006) A comparative study of available software for high-accuracy homology modeling: from sequence alignments to structural models. Protein Sci 15: 808–824.
|
[58] | Sánchez R, Sali A (1997) Advances in comparative protein-structure modelling. Curr Opin Struct Biol 7: 206–214.
|
[59] | Warshel A, Sharma PK, Kato M, Parson WW (2006) Modeling electrostatic effects in proteins. Biochim Biophys Acta 1764: 1647–1676.
|
[60] | Anderson DE, Becktel WJ, Dahlquist FW (1990) pH-induced denaturation of proteins: a single salt bridge contributes 3–5 kcal/mol to the free energy of folding of T4 lysozyme. Biochemistry 29: 2403–2408.
|
[61] | Závodszky P, Kardos J, Svingor, Petsko GA (1998) Adjustment of conformational flexibility is a key event in the thermal adaptation of proteins. Proc Natl Acad Sci U S A 95: 7406–7411.
|
[62] | Jaenicke R (2000) Stability and stabilization of globular proteins in solution. J Biotechnol 79: 193–203.
|
[63] | Somero GN (2004) Adaptation of enzymes to temperature: searching for basic “strategies”. Comp Biochem Physiol B Biochem Mol Biol 139: 321–333.
|
[64] | Erickson JR, Sidell BD, Moerland TS (2005) Temperature sensitivity of calcium binding for parvalbumins from Antarctic and temperate zone teleost fishes. Comp Biochem Physiol A Mol Integr Physiol 140: 179–185.
|
[65] | Erickson JR, Moerland TS (2006) Functional characterization of parvalbumin from the Arctic cod (Boreogadus saida): similarity in calcium affinity among parvalbumins from polar teleosts. Comp Biochem Physiol A Mol Integr Physiol 143: 228–233.
|
[66] | Whittington AC, Moerland TS (2012) Resurrecting prehistoric parvalbumins to explore the evolution of thermal compensation in extant Antarctic fish parvalbumins. J Exp Biol 215: 3281–3292.
|
[67] | Lewit-Bentley A, Réty S (2000) EF-hand calcium-binding proteins. Curr Opin Struct Biol 10: 637–643.
|
[68] | Gillis TE, Marshall CR, Xue XH, Borgford TJ, Tibbits GF (2000) Ca(2+) binding to cardiac troponin C: effects of temperature and pH on mammalian and salmonid isoforms. Am J Physiol Regul Integr Comp Physiol 279: R1707–15.
|
[69] | Gillis TE, Tibbits GF (2002) Beating the cold: the functional evolution of troponin C in teleost fish. Comp Biochem Physiol A Mol Integr Physiol 132: 763–772.
|
[70] | Blumenschein TMA, Gillis TE, Tibbits GF, Sykes BD (2004) Effect of temperature on the structure of trout troponin C. Biochemistry. 43: 4955–4963.
|
[71] | Gillis TE, Marshall CR, Tibbits GF (2007) Functional and evolutionary relationships of troponin C. Physiol Genomics. 32: 16–27.
|
[72] | Swezey RR, Somero GN (1982) Polymerization thermodynamics and structural stabilities of skeletal muscle actins from vertebrates adapted to different temperatures and hydrostatic pressures. Biochemistry 21: 4496–4503.
|
[73] | Detrich HW, Parker SK, Williams RC, Nogales E, Downing KH (2000) Cold adaptation of microtubule assembly and dynamics. Structural interpretation of primary sequence changes present in the alpha- and beta-tubulins of Antarctic fishes. J Biol Chem 275: 37038–37047.
|