Down syndrome is the most common genetic cause of mental retardation. Active fragments of neurotrophic factors release by astrocyte under the stimulation of vasoactive intestinal peptide, NAPVSIPQ (NAP) and SALLRSIPA (SAL) respectively, have shown therapeutic potential for developmental delay and learning deficits. Previous work demonstrated that NAP+SAL prevent developmental delay and glial deficit in Ts65Dn that is a well-characterized mouse model for Down syndrome. The objective of this study is to evaluate if prenatal treatment with these peptides prevents the learning deficit in the Ts65Dn mice. Pregnant Ts65Dn female and control pregnant females were randomly treated (intraperitoneal injection) on pregnancy days 8 through 12 with saline (placebo) or peptides (NAP 20 μg +SAL 20 μg) daily. Learning was assessed in the offspring (8–10 months) using the Morris Watermaze, which measures the latency to find the hidden platform (decrease in latency denotes learning). The investigators were blinded to the prenatal treatment and genotype. Pups were genotyped as trisomic (Down syndrome) or euploid (control) after completion of all tests. Statistical analysis: two-way ANOVA followed by Neuman-Keuls test for multiple comparisons, P<0.05 was used to denote statistical significance. Trisomic mice who prenatally received placebo (Down syndrome -placebo; n = 11) did not demonstrate learning over the five day period. DS mice that were prenatally exposed to peptides (Down syndrome-peptides; n = 10) learned significantly better than Down syndrome -placebo (p<0.01), and similar to control-placebo (n = 33) and control-peptide (n = 30). In conclusion prenatal treatment with the neuroprotective peptides (NAP+SAL) prevented learning deficits in a Down syndrome model. These findings highlight a possibility for the prevention of sequelae in Down syndrome and suggest a potential pregnancy intervention that may improve outcome.
References
[1]
Dolk H, Loane M, Garne E, De Walle H, Queisser-Luft A, et al. (2005) Trends and geographic inequalities in the prevalence of Down syndrome in Europe, 1980–1999. Rev Epidemiol Sante Publique 53: 2S87–2S95.
[2]
Vicari S (2006) Motor development and neuropsychological patterns in persons with Down syndrome. Behavior Genetics 36: 355–364.
[3]
Chen YJ, Fang PC (2005) Sensory evoked potentials in infants with Down syndrome. Acta Pediatrica 94: 1615–1618.
[4]
Toledo C, Alembik Y, Aguirre JA, Stoll C (1999) Growth curves of children with Down syndrome. Ann Genet 42: 81–90.
[5]
Nadel L (2003) Down’s syndrome: a genetic disorder in biobehavioral perspective Genes. Brain and Behavior 2: 156–166.
[6]
Davisson MT, Schmidt C, Akeson EC (1990) Segmental trisomy of murine chromosome 16: a new model system for studying Down syndrome. Prog Clin Biol Res 360: 263–280.
[7]
Holtzman DM, Santucci D, Kilbridge J, Chua-Couzens J, Fontana DJ, et al. (1996) Developmental abnormalities and age-related neurodegeneration in a mouse model of Down syndrome. Proc Natl Acad Sci 93: 13333–13338.
[8]
Belichenko PV, Masliah E, Kleschevnikov AM, Villar AJ, Epstein CJ, et al. (2004) Synaptic structural abnormalities in the Ts65Dn mouse model of Down Syndrome. J Comp Neurol 480: 281–298.
[9]
Contestabile A, Fila T, Ceccarelli C, Bonasoni P, Bonapace L, et al. (2007) Cell cycle alteration and decreased cell proliferation in the hippocampal dentate gyrus and in the neocortical germinal matrix of fetuses with Down syndrome and in Ts65Dn mice. Hippocampus 17: 665–678.
[10]
Best TK, Siarey RJ, Galdzicki Z (2007) Ts65Dn, a mouse model of Down syndrome, exhibits increased GABAB-induced potassium current. J Neurophisiol 97: 892–900.
[11]
Reeves RH, Irving NG, Moran TH, Wohn A, Kitt C, et al. (1995) A mouse model for Down Syndrome exhibits learning and behaviour deficits. Nat Genet 11: 177–84.
[12]
Demas GE, Nelson RJ, Krueger BK, Yarowsky PJ (1996) Spatial memory deficits in segmental trisomic Ts65Dn mice. Behav Brain Res 82: 85–92.
[13]
Demas GE, Nelson RJ, Krueger BK, Yarowsky PJ (1998) Impaired spatial working and reference memory in segmental trisomy (Ts65Dn) mice. Behav Brain Res 90: 199–201.
[14]
Escorihuela RM, Vallina IF, Martinez-Cue′ C, Baamonde C, Dierssen M, et al. (1998) Impaired short- and long-term memory in Ts65Dn mice, a model for Down syndrome. Neurosci Lett 247: 171–4.
[15]
Brenneman DE, Eiden LE (1986) Vasoactive intestinal peptide and electrical activity influence neuronal survival. Proc Natl Acad Sci U S A 83: 1159–62.
[16]
Hill JM, Mervis RF, Politi J, McCune SK, Gozes I, et al. (1994) Blockade of VIP during neonatal development induces neuronal damage and increases VIP and VIP receptors in brain. Ann N Y Acad Sci 31: 211–225.
[17]
Nelson KB, Grether JK, Croen LA, Dambrosia JM, Dickens BF, et al. (2001) Neuropeptides and neurotrophins in neonatal blood of children with autism or mental retardation. Ann Neurol 49: 597–606.
[18]
Nelson PG, Kuddo T, Song EY, Dambrosia JM, Kohler S, et al. (2006) Selected neurotrophins, neuropeptides, and cytokines: developmental trajectory and concentrations in neonatal blood of children with autism or Down syndrome. Int J Dev Neurosci 24: 73–80.
[19]
Hill JM, Ades AM, McCune SK, Sahir N, Moody EM, et al. (2003) Vasoactive intestinal peptide in the brain of a mouse model for Down syndrome. Exp Neurol 183: 56–65.
[20]
Sahir N, Brenneman DE, Hill JM (2006) Neonatal mice of the Down syndrome model, Ts65Dn, exhibit upregulated VIP measures and reduced responsiveness of cortical astrocytes to VIP stimulation. J Mol Neurosci 30: 329–40.
[21]
Wu JY, Henins KA, Gressens P, Gozes I, Fridkin M, et al. (1997) Neurobehavioral development of neonatal mice following blockade of VIP during the early embryonic period. Peptides 18: 1131–1137.
[22]
Brenneman DE, Spong CY, Hauser JM, Abebe D, Pinhasov A, et al. (2004) Protective peptides that are orally active and mechanistically nonchiral. JPET 309: 1190–1197.
[23]
Toso L, Cameroni I, Roberson R, Abebe D, Bissell S, et al. (2008) Prevention of developmental delays in a Down syndrome model. Obstet Gynecol 112: 1242–1251.
[24]
Endres M, Toso L, Roberson R, Park J, Abebe D, et al. (2005) Prevention of alcohol-induced developmental delays and learning abnormalities in a model of fetal alcohol syndrome. Am J Obstet Gynecol 193: 1028–1034.
[25]
Vink J, Auth J, Abebe D, Brenneman DE, Spong CY (2005) Novel peptides prevent alcohol-induced spatial learning deficits and proinflammatory cytokine release in a mouse model of fetal alcohol syndrome. Am J Obstet Gynecol 193: 825–829.
[26]
Incerti M, Toso L, Vink J, Roberson R, Nold C, et al. (2011) Prevention of Learning Deficit in a Down Syndrome Model. Obstet Gynecol 117: 354–361.
[27]
Busciglio J, Pelsman A, Helguera P, Ashur-Fabian O, Pinhasov A, et al. (2007) NAP and ADNF-9 protect normal and Down’s syndrome cortical neurons from oxidative damage and apoptosis. Curr Pharm Des 13: 1091–1098.
[28]
Spong CY, Lee SJ, McCune SK, Gibney G, Abebe DT, et al. (1999) Maternal regulation of embryonic growth: the role of vasoactive intestinal peptide. Endocrinology 140: 917–924.
[29]
Morris RG, Garrud P, Rawlins JN, O’Keefe J (1982) Place navigation in rats with hippocampal lesions. Nature 297: 681–683.
[30]
Liu DP, Schmidt C, Billings T, Davisson MT (2003) Quantitative PCR genotyping assay for the Ts65Dn mouse model of Down syndrome. Biotechniques 35: 1170–1179.
[31]
Toso L, Endres M, Vink J, Abebe DT, Brenneman DE (2006) Learning enhancement with neuropeptides. Am J Obstet Gynecol 194: 1153–8.
[32]
Gozes I, Giladi E, Pinhasov A, Bardea A, Brenneman DE (2000) Activity-dependent neurotrophic factor: intranasal administration of femtomolar-acting peptides improve performance in a water maze. Pharmacol Exp Ther 293: 1091–1098.
[33]
Hill JM (2000) Vasoactive intestinal peptide in neurodevelopmental disorders: therapeutic potential. Curr Pharm Des 13: 1079–1089.
[34]
Vink J, Incerti M, Toso L, Roberson R, Abebe D, et al. (2009) Prenatal NAP_SAL prevents developmental delay in a mouse model of Down syndrome through effects on N-methyl-D-aspartic acid and gamma-aminobutyric acid receptors. Am J Obstet Gynecol 200: 524.e1–524.e4.
[35]
Fernandez F, Morishita W, Zuniga E, Nguyen J, Blank M, et al. (2007) Pharmacotherapy for cognitive impairment in a mouse model of Down syndrome. Nat Neurosci 10: 411–413.
[36]
Blondel O, Collin C, McCarran WJ, Zhu S, Zamostiano R, et al. (2000) A glia-derived signal regulating neuronal differentiation. J Neurosci 20: 8012–8020.
[37]
Kleschevnikov AM, Belichenko PV, Villar AJ, Epstein CJ, Malenka RC, et al. (2004) Hippocampal long-term potentiation suppressed by increased inhibition in the Ts65Dn mouse, a genetic model of Down syndrome. J Neurosci 24: 8153–8160.
[38]
Zaltman R, Beni SM, Giladi E, Pinhasov A, Steingart RA, et al. (2003) Injections of the neuroprotective peptide NAP to newborn mice attenuate head-injury-related dysfunction in adults. Neropharm Toxicol 14: 481–484.
[39]
Spong CY, Abebe D, Gozes I, Brenneman DE (2001) Prevention of fetal demise and growth restriction in a mouse model of fetal alcohol syndrome. J Pharmacol Exp Ther 297: 774–779.
Poggi SH, Goodwin KM, Hill JM, Brenneman DE, Tendi E, et al. (2003) The role of activity-dependent neuroprotective protein in a mouse model of fetal alcohol syndrome. Am J Obstet Gynecol 189: 790–793.
[42]
Spong CY, Auth J, Vink J, Goodwin K, Abebe DT, et al. (2003) Vasoactive intestinal peptide mRNA and immunoreactivity are decreased in fetal alcohol syndrome model. Regul Pept 108: 143–147.