全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Reelin Together with ApoER2 Regulates Interneuron Migration in the Olfactory Bulb

DOI: 10.1371/journal.pone.0050646

Full-Text   Cite this paper   Add to My Lib

Abstract:

One pathway regulating the migration of neurons during development of the mammalian cortex involves the extracellular matrix protein Reelin. Reelin and components of its signaling cascade, the lipoprotein receptors ApoER2 and Vldlr and the intracellular adapter protein Dab1 are pivotal for a correct layer formation during corticogenesis. The olfactory bulb (OB) as a phylogenetically old cortical region is known to be a prominent site of Reelin expression. Although some aspects of Reelin function in the OB have been described, the influence of Reelin on OB layer formation has so far been poorly analyzed. Here we studied animals deficient for either Reelin, Vldlr, ApoER2 or Dab1 as well as double-null mutants. We performed organotypic migration assays, immunohistochemical marker analysis and BrdU incorporation studies to elucidate roles for the different components of the Reelin signaling cascade in OB neuroblast migration and layer formation. We identified ApoER2 as being the main receptor responsible for Reelin mediated detachment of neuroblasts and correct migration of early generated interneurons within the OB, a prerequisite for correct OB lamination.

References

[1]  Rakic P, Caviness VS Jr (1995) Cortical development: view from neurological mutants two decades later. Neuron 14: 1101–1104.
[2]  Batista-Brito R, Close J, Machold R, Fishell G (2008) The distinct temporal origins of olfactory bulb interneuron subtypes. J Neurosci 28: 3966–3975.
[3]  Bayer SA (1983) 3H-thymidine-radiographic studies of neurogenesis in the rat olfactory bulb. Exp Brain Res 50: 329–340.
[4]  De Marchis S, Bovetti S, Carletti B, Hsieh YC, Garzotto D, et al. (2007) Generation of distinct types of periglomerular olfactory bulb interneurons during development and in adult mice: implication for intrinsic properties of the subventricular zone progenitor population. J Neurosci 27: 657–664.
[5]  Kosaka K, Kosaka T (2007) Chemical properties of type 1 and type 2 periglomerular cells in the mouse olfactory bulb are different from those in the rat olfactory bulb. Brain Res 1167: 42–55.
[6]  Hinds JW (1968) Autoradiographic study of histogenesis in the mouse olfactory bulb. I. Time of origin of neurons and neuroglia. J Comp Neurol 134: 287–304.
[7]  Gheusi G, Cremer H, McLean H, Chazal G, Vincent JD, et al. (2000) Importance of newly generated neurons in the adult olfactory bulb for odor discrimination. Proc Natl Acad Sci U S A 97: 1823–1828.
[8]  Kaplan MS, Hinds JW (1977) Neurogenesis in the adult rat: electron microscopic analysis of light radioautographs. Science 197: 1092–1094.
[9]  Gorski JA, Talley T, Qiu M, Puelles L, Rubenstein JL, et al. (2002) Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage. J Neurosci 22: 6309–6314.
[10]  Kohwi M, Petryniak MA, Long JE, Ekker M, Obata K, et al. (2007) A subpopulation of olfactory bulb GABAergic interneurons is derived from Emx1- and Dlx5/6-expressing progenitors. J Neurosci 27: 6878–6891.
[11]  Toresson H, Campbell K (2001) A role for Gsh1 in the developing striatum and olfactory bulb of Gsh2 mutant mice. Development 128: 4769–4780.
[12]  Ventura RE, Goldman JE (2007) Dorsal radial glia generate olfactory bulb interneurons in the postnatal murine brain. J Neurosci 27: 4297–4302.
[13]  Wichterle H, Turnbull DH, Nery S, Fishell G, Alvarez-Buylla A (2001) In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain. Development 128: 3759–3771.
[14]  Willaime-Morawek S, Seaberg RM, Batista C, Labbe E, Attisano L, et al. (2006) Embryonic cortical neural stem cells migrate ventrally and persist as postnatal striatal stem cells. J Cell Biol 175: 159–168.
[15]  Alvarez-Buylla A, Garcia-Verdugo JM (2002) Neurogenesis in adult subventricular zone. J Neurosci 22: 629–634.
[16]  Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97: 703–716.
[17]  Doetsch F, Garcia-Verdugo JM, Alvarez-Buylla A (1997) Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 17: 5046–5061.
[18]  Luskin MB (1998) Neuroblasts of the postnatal mammalian forebrain: their phenotype and fate. J Neurobiol 36: 221–233.
[19]  Marin O, Rubenstein JL (2003) Cell migration in the forebrain. Annu Rev Neurosci 26: 441–483.
[20]  Curran T, D’Arcangelo G (1998) Role of reelin in the control of brain development. Brain Res Brain Res Rev 26: 285–294.
[21]  Forster E, Jossin Y, Zhao S, Chai X, Frotscher M, et al. (2006) Recent progress in understanding the role of Reelin in radial neuronal migration, with specific emphasis on the dentate gyrus. Eur J Neurosci 23: 901–909.
[22]  Forster E, Zhao S, Frotscher M (2006) Laminating the hippocampus. Nat Rev Neurosci 7: 259–267.
[23]  Soriano E, Del Rio JA (2005) The cells of cajal-retzius: still a mystery one century after. Neuron 46: 389–394.
[24]  Tissir F, Goffinet AM (2003) Reelin and brain development. Nat Rev Neurosci 4: 496–505.
[25]  D’Arcangelo G, Homayouni R, Keshvara L, Rice DS, Sheldon M, et al. (1999) Reelin is a ligand for lipoprotein receptors. Neuron 24: 471–479.
[26]  Hiesberger T, Trommsdorff M, Howell BW, Goffinet A, Mumby MC, et al. (1999) Direct binding of Reelin to VLDL receptor and ApoE receptor 2 induces tyrosine phosphorylation of disabled-1 and modulates tau phosphorylation. Neuron 24: 481–489.
[27]  Trommsdorff M, Gotthardt M, Hiesberger T, Shelton J, Stockinger W, et al. (1999) Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97: 689–701.
[28]  Howell BW, Hawkes R, Soriano P, Cooper JA (1997) Neuronal position in the developing brain is regulated by mouse disabled-1. Nature 389: 733–737.
[29]  Rice DS, Sheldon M, D’Arcangelo G, Nakajima K, Goldowitz D, et al. (1998) Disabled-1 acts downstream of Reelin in a signaling pathway that controls laminar organization in the mammalian brain. Development 125: 3719–3729.
[30]  Sheldon M, Rice DS, D’Arcangelo G, Yoneshima H, Nakajima K, et al. (1997) Scrambler and yotari disrupt the disabled gene and produce a reeler-like phenotype in mice. Nature 389: 730–733.
[31]  Ware ML, Fox JW, Gonzalez JL, Davis NM, Lambert de Rouvroit C, et al. (1997) Aberrant splicing of a mouse disabled homolog, mdab1, in the scrambler mouse. Neuron 19: 239–249.
[32]  Howell BW, Herrick TM, Cooper JA (1999) Reelin-induced tyrosine [corrected] phosphorylation of disabled 1 during neuronal positioning. Genes Dev 13: 643–648.
[33]  Lambert de Rouvroit C, Goffinet AM (1998) The reeler mouse as a model of brain development. Adv Anat Embryol Cell Biol 150: 1–106.
[34]  Dulabon L, Olson EC, Taglienti MG, Eisenhuth S, McGrath B, et al. (2000) Reelin binds alpha3beta1 integrin and inhibits neuronal migration. Neuron 27: 33–44.
[35]  Gilmore EC, Herrup K (2000) Cortical development: receiving reelin. Curr Biol 10: R162–166.
[36]  Hack I, Bancila M, Loulier K, Carroll P, Cremer H (2002) Reelin is a detachment signal in tangential chain-migration during postnatal neurogenesis. Nat Neurosci 5: 939–945.
[37]  Sanada K, Gupta A, Tsai LH (2004) Disabled-1-regulated adhesion of migrating neurons to radial glial fiber contributes to neuronal positioning during early corticogenesis. Neuron 42: 197–211.
[38]  Alcantara S, Ruiz M, D’Arcangelo G, Ezan F, de Lecea L, et al. (1998) Regional and cellular patterns of reelin mRNA expression in the forebrain of the developing and adult mouse. J Neurosci 18: 7779–7799.
[39]  Wyss JM, Stanfield BB, Cowan WM (1980) Structural abnormalities in the olfactory bulb of the Reeler mouse. Brain Res 188: 566–571.
[40]  Andrade N, Komnenovic V, Blake SM, Jossin Y, Howell B, et al. (2007) ApoER2/VLDL receptor and Dab1 in the rostral migratory stream function in postnatal neuronal migration independently of Reelin. Proc Natl Acad Sci U S A 104: 8508–8513.
[41]  Zucker B, Luthi-Carter R, Kama JA, Dunah AW, Stern EA, et al. (2005) Transcriptional dysregulation in striatal projection- and interneurons in a mouse model of Huntington’s disease: neuronal selectivity and potential neuroprotective role of HAP1. Hum Mol Genet 14: 179–189.
[42]  Mayer H, Duit S, Hauser C, Schneider WJ, Nimpf J (2006) Reconstitution of the Reelin signaling pathway in fibroblasts demonstrates that Dab1 phosphorylation is independent of receptor localization in lipid rafts. Mol Cell Biol 26: 19–27.
[43]  Rossel M, Loulier K, Feuillet C, Alonso S, Carroll P (2005) Reelin signaling is necessary for a specific step in the migration of hindbrain efferent neurons. Development 132: 1175–1185.
[44]  Hack I, Hellwig S, Junghans D, Brunne B, Bock HH, et al. (2007) Divergent roles of ApoER2 and Vldlr in the migration of cortical neurons. Development 134: 3883–3891.
[45]  Haas CA, Deller T, Krsnik Z, Tielsch A, Woods A, et al. (2000) Entorhinal cortex lesion does not alter reelin messenger RNA expression in the dentate gyrus of young and adult rats. Neuroscience 97: 25–31.
[46]  Junghans D, Hack I, Frotscher M, Taylor V, Kemler R (2005) Beta-catenin-mediated cell-adhesion is vital for embryonic forebrain development. Dev Dyn 233: 528–539.
[47]  Qin ZP, Ye SM, Du JZ, Shen GY (2005) Postnatal developmental expression of calbindin, calretinin and parvalbumin in mouse main olfactory bulb. Acta Biochim Biophys Sin (Shanghai) 37: 276–282.
[48]  Yamashita N, Uchida Y, Ohshima T, Hirai S, Nakamura F, et al. (2006) Collapsin response mediator protein 1 mediates reelin signaling in cortical neuronal migration. J Neurosci 26: 13357–13362.
[49]  Nadarajah B, Brunstrom JE, Grutzendler J, Wong RO, Pearlman AL (2001) Two modes of radial migration in early development of the cerebral cortex. Nat Neurosci 4: 143–150.
[50]  Nadarajah B, Parnavelas JG (2002) Modes of neuronal migration in the developing cerebral cortex. Nat Rev Neurosci 3: 423–432.
[51]  Kriegstein AR, Gotz M (2003) Radial glia diversity: a matter of cell fate. Glia 43: 37–43.
[52]  Caviness VS Jr, Rakic P (1978) Mechanisms of cortical development: a view from mutations in mice. Annu Rev Neurosci 1: 297–326.
[53]  Puche AC, Shipley MT (2001) Radial glia development in the mouse olfactory bulb. J Comp Neurol 434: 1–12.
[54]  Perez-Garcia CG, Tissir F, Goffinet AM, Meyer G (2004) Reelin receptors in developing laminated brain structures of mouse and human. Eur J Neurosci 20: 2827–2832.
[55]  Martin-Lopez E, Blanchart A, De Carlos JA, Lopez-Mascaraque L (2011) Dab1 (Disable homolog-1) reelin adaptor protein is overexpressed in the olfactory bulb at early postnatal stages. PLoS One 6: e26673.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133