全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

“Proof-Of-Concept” Evaluation of an Automated Sputum Smear Microscopy System for Tuberculosis Diagnosis

DOI: 10.1371/journal.pone.0050173

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background “TBDx” is an innovative smear microscopy system that automatically loads slides onto a microscope, focuses and digitally captures images and then classifies smears as positive or negative using computerised algorithms. Objectives To determine the diagnostic accuracy of TBDx, using culture as the gold standard, and compare this to a microscopist's diagnostic performance. Methods This study is nested within a cross-sectional study of tuberculosis suspects from South African gold mines. All tuberculosis suspects had one sputum sample collected, which was decontaminated prior to smear microscopy, liquid culture and organism identification. All slides were auramine-stained and then read by both a research microscopist and by TBDx using fluorescence microscopes, classifying slides based on the WHO classification standard of 100 fields of view (FoV) at 400× magnification. Results Of 981 specimens, 269 were culture positive for Mycobacterium tuberculosis (27.4%). TBDx had higher sensitivity than the microscopist (75.8% versus 52.8%, respectively), but markedly lower specificity (43.5% versus 98.6%, respectively). TBDx classified 520/981 smears (53.0%) as scanty positive. Hence, a proposed hybrid software/human approach that combined TBDx examination of all smears with microscopist re-examination of TBDx scanty smears was explored by replacing the “positive” result of slides with 1–9 AFB detected on TBDx with the microscopist's original reading. Compared to using the microscopist's original results for all 981 slides, this hybrid approach resulted in equivalent specificity, a slight reduction in sensitivity from 52.8% to 49.4% (difference of 3.3%; 95% confidence interval: 0.2%, 6.5%), and a reduction in the number of slides to be read by the microscopist by 47.0%. Discussion Compared to a research microscopist, the hybrid software/human approach had similar specificity and positive predictive value, but sensitivity requires further improvement. Automated microscopy has the potential to substantially reduce the number of slides read by microscopists.

References

[1]  Stop TB Department (2011) Global tuberculosis control: WHO report 2011. Geneva: World Health Organization.
[2]  Steingart KR, Henry M, Ng V, Hopewell PC, Ramsay A, et al. (2006) Fluorescence versus conventional sputum smear microscopy for tuberculosis: a systematic review. Lancet Infect Dis 6: 570–581.
[3]  Nguyen TN, Wells CD, Binkin NJ, Pham DL, Nguyen VC (1999) The importance of quality control of sputum smear microscopy: the effect of reading errors on treatment decisions and outcomes. Int J Tuberc Lung Dis 3: 483–487.
[4]  Van Deun A, Salim AH, Cooreman E, Hossain MA, Rema A, et al. (2002) Optimal tuberculosis case detection by direct sputum smear microscopy: how much better is more? Int J Tuberc Lung Dis 6: 222–230.
[5]  Muyoyeta M, Schaap JA, De Haas P, Mwanza W, Muvwimi MW, et al. (2009) Comparison of four culture systems for Mycobacterium tuberculosis in the Zambian National Reference Laboratory. Int J Tuberc Lung Dis 13: 460–465.
[6]  Chihota VN, Grant AD, Fielding K, Ndibongo B, van Zyl A, et al. (2010) Liquid vs. solid culture for tuberculosis: performance and cost in a resource-constrained setting. Int J Tuberc Lung Dis 14: 1024–1031.
[7]  Boehme CC, Nabeta P, Hillemann D, Nicol MP, Shenai S, et al. (2010) Rapid molecular detection of tuberculosis and rifampin resistance. N Engl J Med 363: 1005–1015.
[8]  Stop TB Department (2011) Automated real-time nucleic acid amplification technology for rapid and simultaneous detection of tuberculosis and rifampicin resistance: Xpert MTB/RIF system. Geneva: World Health Organization.
[9]  Fielding KL, Grant AD, Hayes RJ, Chaisson RE, Corbett EL, et al. (2011) Thibela TB: design and methods of a cluster randomised trial of the effect of community-wide isoniazid preventive therapy on tuberculosis amongst gold miners in South Africa. Contemp Clin Trials 32: 382–392.
[10]  Dorman SE, Chihota VN, Lewis JJ, van der Meulen M, Mathema B, et al. (2012) Genotype MTBDRplus for Direct Detection of Mycobacterium tuberculosis and Drug Resistance in Strains from Gold Miners in South Africa. J Clin Microbiol 50: 1189–1194.
[11]  Global TB Programme, World Health Organization. Laboratory services in TB control, Part II: Microscopy. WHO/TB/98.258. Available: http://whqlibdoc.who.int/hq/1998/WHO_TB_?98.258_(part2).pdf. Accessed 2012 Jan 2.
[12]  Khutlang R, Krishnan S, Whitelaw A, Douglas TS (2010) Automated detection of tuberculosis in Ziehl-Neelsen-stained sputum smears using two one-class classifiers. J Microsc 237: 96–102.
[13]  Sadaphal P, Rao J, Comstock GW, Beg MF (2008) Image processing techniques for identifying Mycobacterium tuberculosis in Ziehl-Neelsen stains. Int J Tuberc Lung Dis 12: 579–582.
[14]  Veropoulos K, Learmonth G, Campbell C, Knight B, Simpson J (1999) Automated identification of tubercle bacilli in sputum. A preliminary investigation. Anal Quant Cytol Histol 21: 277–282.
[15]  Somoskovi A, Gyori Z, Czoboly N, Magyar P (1999) Application of a computer-directed automated microscope in mycobacteriology. Int J Tuberc Lung Dis 3: 354–357.
[16]  Breslauer DN, Maamari RN, Switz NA, Lam WA, Fletcher DA (2009) Mobile phone based clinical microscopy for global health applications. PLoS One 4: e6320.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133