It was hypothesized that applying the polymer-induced liquid-precursor (PILP) system to artificial lesions would result in time-dependent functional remineralization of carious dentin lesions that restores the mechanical properties of demineralized dentin matrix. 140 μm deep artificial caries lesions were remineralized via the PILP process for 7–28 days at 37°C to determine temporal remineralization characteristics. Poly-L-aspartic acid (27 KDa) was used as the polymeric process-directing agent and was added to the remineralization solution at a calcium-to-phosphate ratio of 2.14 (mol/mol). Nanomechanical properties of hydrated artificial lesions had a low reduced elastic modulus (ER = 0.2 GPa) region extending about 70 μm into the lesion, with a sloped region to about 140 μm where values reached normal dentin (18–20 GPa). After 7 days specimens recovered mechanical properties in the sloped region by 51% compared to the artificial lesion. Between 7–14 days, recovery of the outer portion of the lesion continued to a level of about 10 GPa with 74% improvement. 28 days of PILP mineralization resulted in 91% improvement of ER compared to the artificial lesion. These differences were statistically significant as determined from change-point diagrams. Mineral profiles determined by micro x-ray computed tomography were shallower than those determined by nanoindentation, and showed similar changes over time, but full mineral recovery occurred after 14 days in both the outer and sloped portions of the lesion. Scanning electron microscopy and energy dispersive x-ray analysis showed similar morphologies that were distinct from normal dentin with a clear line of demarcation between the outer and sloped portions of the lesion. Transmission electron microscopy and selected area electron diffraction showed that the starting lesions contained some residual mineral in the outer portions, which exhibited poor crystallinity. During remineralization, intrafibrillar mineral increased and crystallinity improved with intrafibrillar mineral exhibiting the orientation found in normal dentin or bone.
References
[1]
Kinney JH, Habelitz S, Marshall SJ, Marshall GW (2003) The importance of intrafibrillar mineralization of collagen on the mechanical properties of dentin. J Dent Res 82: 957–961.
[2]
Bertassoni LE, Habelitz S, Kinney JH, Marshall SJ, Marshall GW (2009) Biomechanical perspective on the remineralization of dentin. Caries Res 43: 70–77.
[3]
ten Cate JM (2001) Remineralization of caries lesions extending into dentin. J Dent Res 80: 1407–1411.
[4]
ten Cate JM (2008) Remineralization of deep enamel dentine caries lesions. Aust Dent J 53: 281–285.
[5]
Bertassoni LE, Habelitz S, Marshall SJ, Marshall GW (2011) Mechanical recovery of dentin following remineralization in vitro–an indentation study. J Biomech 44: 176–181.
[6]
Olszta MJ, Douglas EP, Gower LB (2003) Scanning electron microscopic analysis of the mineralization of type I collagen via a polymer-induced liquid-precursor (PILP) process. Calcif Tissue Int 72: 583–591.
[7]
Olszta MJ, Cheng X, Jee SS, Kumar R, Kim Y-Y, et al. (2007) Bone structure and formation: A new perspective. Materials Science and Engineering: R: Reports 58: 77–116.
[8]
Gower LB (2008) Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem Rev 108: 4551–4627.
[9]
Jee SS, Thula TT, Gower LB (2010) Development of bone-like composites via the polymer-induced liquid-precursor (PILP) process. Part 1: influence of polymer molecular weight. Acta Biomater 6: 3676–3686.
[10]
Gower LB, Odom DJ (2000) Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process. Journal of Crystal Growth 210: 719–734.
[11]
Dai L, Douglas EP, Gower LB (2008) Compositional analysis of a polymer-induced liquid-precursor (PILP) amorphous CaCO3 phase. Journal of Non-Crystalline Solids 354: 1845–1854.
[12]
Thula TT, Rodriguez DE, Lee MH, Pendi L, Podschun J, et al. (2011) In vitro mineralization of dense collagen substrates: a biomimetic approach toward the development of bone-graft materials. Acta Biomater 7: 3158–3169.
[13]
Olszta MJ, Odom DJ, Douglas EP, Gower LB (2003) A new paradigm for biomineral formation: mineralization via an amorphous liquid-phase precursor. Connect Tissue Res 44: 326–334.
[14]
Nudelman F, Pieterse K, George A, Bomans PH, Friedrich H, et al. (2010) The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat Mater 9: 1004–1009.
[15]
Tay FR, Pashley DH (2008) Guided tissue remineralisation of partially demineralised human dentine. Biomaterials 29: 1127–1137.
[16]
Kim J, Arola DD, Gu L, Kim YK, Mai S, et al. (2010) Functional biomimetic analogs help remineralize apatite-depleted demineralized resin-infiltrated dentin via a bottom-up approach. Acta Biomater 6: 2740–2750.
[17]
Mai S, Kim YK, Kim J, Yiu CK, Ling J, et al. (2010) In vitro remineralization of severely compromised bonded dentin. J Dent Res 89: 405–410.
[18]
Kim YK, Gu LS, Bryan TE, Kim JR, Chen L, et al. (2010) Mineralisation of reconstituted collagen using polyvinylphosphonic acid/polyacrylic acid templating matrix protein analogues in the presence of calcium, phosphate and hydroxyl ions. Biomaterials 31: 6618–6627.
[19]
Pugach MK, Strother J, Darling CL, Fried D, Gansky SA, et al. (2009) Dentin caries zones: mineral, structure, and properties. J Dent Res 88: 71–76.
[20]
Marshall GW, Habelitz S, Gallagher R, Balooch M, Balooch G, et al. (2001) Nanomechanical properties of hydrated carious human dentin. J Dent Res 80: 1768–1771.
[21]
White JM, Goodis HE, Marshall SJ, Marshall GW (1994) Sterilization of teeth by gamma radiation. J Dent Res 73: 1560–1567.
[22]
McIntyre JM, Featherstone JD, Fu J (2000) Studies of dental root surface caries. 1: Comparison of natural and artificial root caries lesions. Aust Dent J 45: 24–30.
[23]
Balooch M, Wu-Magidi IC, Balazs A, Lundkvist AS, Marshall SJ, et al. (1998) Viscoelastic properties of demineralized human dentin measured in water with atomic force microscope (AFM)-based indentation. J Biomed Mater Res 40: 539–544.
[24]
Zheng L, Hilton JF, Habelitz S, Marshall SJ, Marshall GW (2003) Dentin caries activity status related to hardness and elasticity. Eur J Oral Sci 111: 243–252.
[25]
Dominicus A, Ripatti S, Pedersen NL, Palmgren J (2008) A random change point model for assessing variability in repeated measures of cognitive function. Stat Med 27: 5786–5798.
[26]
Marshall GW, Marshall SJ, Kinney JH, Balooch M (1997) The dentin substrate: structure and properties related to bonding. J Dent 25: 441–458.
[27]
Guo W, Ramano J (2007) A generalized Sidak-Holm procedure and control of generalized error rates under independence. Statistical applications in genetics and molecular biology 6: Article 3.
[28]
Balooch M, Habelitz S, Kinney JH, Marshall SJ, Marshall GW (2008) Mechanical properties of mineralized collagen fibrils as influenced by demineralization. J Struct Biol 162: 404–410.
[29]
Ho SP, Sulyanto RM, Marshall SJ, Marshall GW (2005) The cementum-dentin junction also contains glycosaminoglycans and collagen fibrils. J Struct Biol 151: 69–78.
[30]
Bertassoni LE, Habelitz S, Pugach M, Soares PC, Marshall SJ, et al. (2010) Evaluation of surface structural and mechanical changes following remineralization of dentin. Scanning 32: 312–319.
[31]
Thula-Mata T, Burwell A, Gower LB, Habelitz S, Marshall.GW (2011) MRS Proceedings 1355 mrss 11-1355-jj08. Remineralization of Artificial Dentin Lesions via the Polymer-Induced Liquid-Precursor (PILP) Process, pages on-line. DOI: 10.1557/opl.
[32]
Martin-De Las Heras S, Valenzuela A, Overall CM (2000) The matrix metalloproteinase gelatinase A in human dentine. Arch Oral Biol. 45: 757–765.
[33]
van Strijp AJ, Jansen DC, DeGroot J, ten Cate JM, Everts V (2003) Host-derived proteinases and degradation of dentine collagen in situ. Caries Res 37: 58–65.
[34]
Nishitani Y, Yoshiyama M, Wadgaonkar B, Breschi L, Mannello F, et al. (2006) Activation of gelatinolytic/collagenolytic activity in dentin by self-etching adhesives. Eur J Oral Sci 114: 160–166.
[35]
Nascimento FD, Minciotti CL, Geraldeli S, Carrilho MR, Pashley DH, et al. (2011) Cysteine cathepsins in human carious dentin. J Dent Res 90: 506–511.
[36]
Sulkala M, Wahlgren J, Larmas M, Sorsa T, Teronen O, et al. (2001) The effects of MMP inhibitors on human salivary MMP activity and caries progression in rats. J Dent Res 80: 1545–1549.