全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Dopamine Signaling Is Essential for Precise Rates of Locomotion by C. elegans

DOI: 10.1371/journal.pone.0038649

Full-Text   Cite this paper   Add to My Lib

Abstract:

Dopamine is an important neuromodulator in both vertebrates and invertebrates. We have found that reduced dopamine signaling can cause a distinct abnormality in the behavior of the nematode C. elegans, which has only eight dopaminergic neurons. Using an automated particle-tracking system for the analysis of C. elegans locomotion, we observed that individual wild-type animals made small adjustments to their speed to maintain constant rates of locomotion. By contrast, individual mutant animals defective in the synthesis of dopamine made larger adjustments to their speeds, resulting in large fluctuations in their rates of locomotion. Mutants defective in dopamine signaling also frequently exhibited both abnormally high and abnormally low average speeds. The ability to make small adjustments to speed was restored to these mutants by treatment with dopamine. These behaviors depended on the D2-like dopamine receptor DOP-3 and the G-protein subunit GOA-1. We suggest that C. elegans and other animals, including humans, might share mechanisms by which dopamine restricts motor activity levels and coordinates movement.

References

[1]  Wise RA (2004) Dopamine, learning and motivation. Nat Rev Neurosci 5: 483–494.
[2]  Schultz W (2007) Behavioral dopamine signals. Trends Neurosci 30: 203–210.
[3]  Hornykiewicz O (2006) The discovery of dopamine deficiency in the parkinsonian brain. J Neural Transm: Suppl 709–15.
[4]  Solanto MV (2002) Dopamine dysfunction in AD/HD: integrating clinical and basic neuroscience research. Behav Brain Res 130: 65–71.
[5]  White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 314: 340.
[6]  Bargmann CI (1998) Neurobiology of the Caenorhabditis elegans genome. Science 282: 2028–2033.
[7]  Sulston J, Dew M, Brenner S (1975) Dopaminergic neurons in the nematode Caenorhabditis elegans. J Comp Neurol 163: 215–226.
[8]  White JG, Southgate E, Thomson JN, Brenner S (1976) The structure of the ventral nerve cord of Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 275: 327–348.
[9]  Culotti JG, Russell RL (1978) Osmotic avoidance defective mutants of the nematode Caenorhabditis elegans. Genetics 90: 243–256.
[10]  Bargmann CI, Horvitz HR (1991) Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans. Neuron 7: 729–742.
[11]  Bargmann CI, Hartwieg E, Horvitz HR (1993) Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 74: 515–527.
[12]  Gray JM, Karow DS, Lu H, Chang AJ, Chang JS, et al. (2004) Oxygen sensation and social feeding mediated by a C. elegans guanylate cyclase homologue. Nature 430: 317–322.
[13]  Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71–94.
[14]  Ward S (1973) Chemotaxis by the nematode Caenorhabditis elegans: identification of attractants and analysis of the response by use of mutants. Proc Natl Acad Sci U S A 70: 817–821.
[15]  Hedgecock EM, Russell RL (1975) Normal and mutant thermotaxis in the nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A 72: 4061–4065.
[16]  Sawin ER, Ranganathan R, Horvitz HR (2000) C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron 26: 619–631.
[17]  Zhang Y, Lu H, Bargmann CI (2005) Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans. Nature 438: 179–184.
[18]  Sanyal S, Wintle RF, Kindt KS, Nuttley WM, Arvan R, et al. (2004) Dopamine modulates the plasticity of mechanosensory responses in Caenorhabditis elegans. Embo J 23: 473–482.
[19]  Hills T, Brockie PJ, Maricq AV (2004) Dopamine and glutamate control area-restricted search behavior in Caenorhabditis elegans. J Neurosci 24: 1217–1225.
[20]  Vidal-Gadea A, Topper S, Young L, Crisp A, Kressin L, et al. (2011) Caenorhabditis elegans selects distinct crawling and swimming gaits via dopamine and serotonin. Proc Natl Acad Sci U S A 108: 17504–17509.
[21]  Chase DL, Pepper JS, Koelle MR (2004) Mechanism of extrasynaptic dopamine signaling in Caenorhabditis elegans. Nat Neurosci 7: 1096–1103.
[22]  Lints R, Emmons SW (1999) Patterning of dopaminergic neurotransmitter identity among Caenorhabditis elegans ray sensory neurons by a TGFbeta family signaling pathway and a Hox gene. Development 126: 5819–5831.
[23]  Nagatsu T, Levitt M, Udenfriend S (1964) Tyrosine Hydroxylase. the Initial Step in Norepinephrine Biosynthesis. J Biol Chem 239: 2910–2917.
[24]  Ranganathan R, Sawin ER, Trent C, Horvitz HR (2001) Mutations in the Caenorhabditis elegans serotonin reuptake transporter MOD-5 reveal serotonin-dependent and -independent activities of fluoxetine. J Neurosci 21: 5871–5884.
[25]  McDonald PW, Hardie SL, Jessen TN, Carvelli L, Matthies DS, et al. (2007) Vigorous motor activity in Caenorhabditis elegans requires efficient clearance of dopamine mediated by synaptic localization of the dopamine transporter DAT-1. J Neurosci 27: 14216–14227.
[26]  Hamdan FF, Ungrin MD, Abramovitz M, Ribeiro P (1999) Characterization of a novel serotonin receptor from Caenorhabditis elegans: cloning and expression of two splice variants. J Neurochem 72: 1372–1383.
[27]  Rex E, Komuniecki RW (2002) Characterization of a tyramine receptor from Caenorhabditis elegans. J Neurochem 82: 1352–1359.
[28]  Dempsey CM, Mackenzie SM, Gargus A, Blanco G, Sze JY (2005) Serotonin (5HT), fluoxetine, imipramine and dopamine target distinct 5HT receptor signaling to modulate Caenorhabditis elegans egg-laying behavior. Genetics 169: 1425–1436.
[29]  Gustafson M (2007) Serotonin signaling in C. elegans, Ph.D. Thesis in Biology (Cambridge: Massachusetts Institute of Technology).
[30]  Mendel JE, Korswagen HC, Liu KS, Hajdu-Cronin YM, Simon MI, et al. (1995) Participation of the protein Go in multiple aspects of behavior in C. elegans. Science 267: 1652–1655.
[31]  Segalat L, Elkes DA, Kaplan JM (1995) Modulation of serotonin-controlled behaviors by Go in Caenorhabditis elegans. Science 267: 1648–1651.
[32]  McIntire SL, Reimer RJ, Schuske K, Edwards RH, Jorgensen EM (1997) Identification and characterization of the vesicular GABA transporter. Nature 389: 870–876.
[33]  Alfonso A, Grundahl K, Duerr JS, Han HP, Rand JB (1993) The Caenorhabditis elegans unc-17 gene: a putative vesicular acetylcholine transporter. Science 261: 617–619.
[34]  Komatsu H, Mori I, Rhee JS, Akaike N, Ohshima Y (1996) Mutations in a cyclic nucleotide-gated channel lead to abnormal thermosensation and chemosensation in C. elegans. Neuron 17: 707–718.
[35]  Yu S, Avery L, Baude E, Garbers DL (1997) Guanylyl cyclase expression in specific sensory neurons: a new family of chemosensory receptors. Proc Natl Acad Sci U S A 94: 3384–3387.
[36]  Kindt KS, Quast KB, Giles AC, De S, Hendrey D, et al. (2007) Dopamine Mediates Context-Dependent Modulation of Sensory Plasticity in C. elegans. Neuron 55: 662–676.
[37]  Sawin ER (1996) Genetic and cellular analysis of modulated behaviors in Caenorhabditis elegans, Ph.D. Thesis in Biology (Cambridge: Massachusetts Institute of Technology).
[38]  Tolosa E, Wenning G, Poewe W (2006) The diagnosis of Parkinson's disease. Lancet Neurol 5: 75–86.
[39]  Watts RL (1997) The role of dopamine agonists in early Parkinson's disease. Neurology 49: S34–48.
[40]  Tulloch IF (1997) Pharmacologic profile of ropinirole: a nonergoline dopamine agonist. Neurology 49: S58–62.
[41]  Olanow CW, Agid Y, Mizuno Y, Albanese A, Bonuccelli U, et al. (2004) Levodopa in the treatment of Parkinson's disease: current controversies. Mov Disord 19: 997–1005.
[42]  Stern MB (1997) The changing standard of care in Parkinson's disease: current concepts and controversies. Neurology 49: S1.
[43]  Cotzias GC, Papavasiliou PS, Gellene R (1969) L-dopa in parkinson's syndrome. N Engl J Med 281: 272.
[44]  Dauer W, Przedborski S (2003) Parkinson's disease: mechanisms and models. Neuron 39: 889–909.
[45]  Clark DA, Gabel CV, Lee TM, Samuel AD (2007) Short-term adaptation and temporal processing in the cryophilic response of Caenorhabditis elegans. J Neurophysiol 97: 1903–1910.
[46]  GitHub website. 15: Available: https://github.com/samuellab/EarlyVersio?nWormTracker Accessed 2012 May.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133