Recent studies show that combinations of defined key developmental transcription factors (TFs) can reprogram somatic cells to pluripotency or induce cell conversion of one somatic cell type to another. However, it is not clear if single genes can define a cell`s identity and if the cell fate defining potential of TFs is also operative in pluripotent stem cells in vitro. Here, we show that ectopic expression of the neural TF Neurogenin2 (Ngn2) is sufficient to induce rapid and efficient differentiation of embryonic stem cells (ESCs) into mature glutamatergic neurons. Ngn2-induced neuronal differentiation did not require any additional external or internal factors and occurred even under pluripotency-promoting conditions. Differentiated cells displayed neuron-specific morphology, protein expression, and functional features, most importantly the generation of action potentials and contacts with hippocampal neurons. Gene expression analyses revealed that Ngn2-induced in vitro differentiation partially resembled neurogenesis in vivo, as it included specific activation of Ngn2 target genes and interaction partners. These findings demonstrate that a single gene is sufficient to determine cell fate decisions of uncommitted stem cells thus giving insights into the role of key developmental genes during lineage commitment. Furthermore, we present a promising tool to improve directed differentiation strategies for applications in both stem cell research and regenerative medicine.
References
[1]
Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA (2008) In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature. 455. : 627–32. doi:10.1038/nature07314.
[2]
Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: 663–76.
[3]
Wernig M, Meissner A, Foreman R, Brambrink T, Ku M (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448: 318–24.
[4]
Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Südhof TC (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature. 463. : 1035–41. doi:10.1038/nature08797.
[5]
Zhao S, Nichols J, Smith AG, Li M (2004) SoxB transcription factors specify neuroectodermal lineage choice in ES cells. Molecular and cellular neurosciences. 27. : 332–42. doi:10.1016/j.mcn.2004.08.002.
[6]
Chung S, Sonntag K-C, Andersson T, Bjorklund LM, Park J-J (2002) Genetic engineering of mouse embryonic stem cells by Nurr1 enhances differentiation and maturation into dopaminergic neurons. European Journal of Neuroscience 16: 1829–1838. doi:10.1046/j.1460-9568.2002.02255.x.
[7]
Reyes JH, O’Shea KS, Wys NL, Velkey JM, Prieskorn DM (2008) Glutamatergic neuronal differentiation of mouse embryonic stem cells after transient expression of neurogenin 1 and treatment with BDNF and GDNF: in vitro and in vivo studies. The Journal of neuroscience?: the official journal of the Society for Neuroscience. 28. : 12622–31. doi:10.1523/JNEUROSCI.0563- 08.2008.
[8]
Hooper M, Hardy K, Handyside A, Hunter S, Monk M (1987) HPRT-deficient (Lesch-Nyhan) mouse embryos derived from germline colonization by cultured cells. Nature. 326. : 292–5. doi:10.1038/326292a0.
[9]
Kawakami K, Noda T (2004) Transposition of the Tol2 element, an Ac-like element from the Japanese medaka fish Oryzias latipes, in mouse embryonic stem cells. Genetics 166: 895–9.
[10]
Peitz M, J?ger R, Patsch C, J?ger A, Egert A (2007) Enhanced purification of cell-permeant Cre and germline transmission after transduction into mouse embryonic stem cells. Genesis (New York, N.Y.?: 2000). 45. : 508–17. doi:10.1002/dvg.20321.
[11]
Feil R, Brocard J, Mascrez B, LeMeur M, Metzger D (1996) Ligand-activated site-specific recombination in mice. Proceedings of the National Academy of Sciences of the United States of America 93: 10887–90.
[12]
Wagner TU, Kraeussling M, Fedorov LM, Reiss C, Kneitz B (2008) STAT3 and SMAD1 signalling in Medaka embryonic stem-like cells and blastula embryos. Stem cells and development. doi:10.1089/scd.2007.0262.
[13]
Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Archiv?: European journal of physiology 391: 85–100.
[14]
Pevny LH, Sockanathan S, Placzek M, Lovell-Badge R (1998) A role for SOX1 in neural determination. Development (Cambridge, England) 125: 1967–78.
[15]
Takebayashi K, Takahashi S, Yokota C, Tsuda H, Nakanishi S (1997) Conversion of ectoderm into a neural fate by ATH-3, a vertebrate basic helix-loop-helix gene homologous to Drosophila proneural gene atonal. The EMBO journal. 16. : 384–95. doi:10.1093/emboj/16.2.384.
[16]
Zhou Q, Wang S, Anderson DJ (2000) Identification of a novel family of oligodendrocyte lineage-specific basic helix-loop-helix transcription factors. Neuron 25: 331–43.
[17]
Takebayashi H, Nabeshima Y, Yoshida S, Chisaka O, Ikenaka K (2002) The basic helix-loop-helix factor olig2 is essential for the development of motoneuron and oligodendrocyte lineages. Current biology?: CB 12: 1157–63.
[18]
Tomita K, Moriyoshi K, Nakanishi S, Guillemot F, Kageyama R (2000) Mammalian achaete-scute and atonal homologs regulate neuronal versus glial fate determination in the central nervous system. The EMBO journal. 19. : 5460–72. doi:10.1093/emboj/19.20.5460.
[19]
Nishiguchi S, Wood H, Kondoh H, Lovell-Badge R, Episkopou V (1998) Sox1 directly regulates the gamma-crystallin genes and is essential for lens development in mice. Genes & development 12: 776–81.
[20]
Gleeson JG, Lin PT, Flanagan L, Walsh CA (1999) Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron 23: 257–71.
[21]
Francis F, Koulakoff A, Boucher D, Chafey P, Schaar B (1999) Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons. Neuron 23: 247–56.
[22]
Mullen RJ, Buck CR, Smith AM (1992) NeuN, a neuronal specific nuclear protein in vertebrates. Development (Cambridge, England) 116: 201–11.
[23]
Chambers I, Colby D, Robertson M, Nichols J, Lee S (2003) Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113: 643–55.
[24]
Hart AH, Hartley L, Ibrahim M, Robb L (2004) Identification, cloning and expression analysis of the pluripotency promoting Nanog genes in mouse and human. Developmental dynamics?: an official publication of the American Association of Anatomists. 230. : 187–98. doi:10.1002/dvdy.20034.
[25]
Niwa H, Burdon T, Chambers I, Smith A (1998) Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes & development 12: 2048–60.
[26]
Chambers I, Silva J, Colby D, Nichols J, Nijmeijer B (2007) Nanog safeguards pluripotency and mediates germline development. Nature. 450. : 1230–4. doi:10.1038/nature06403.
[27]
Walther C, Gruss P (1991) Pax-6, a murine paired box gene, is expressed in the developing CNS. Development (Cambridge, England) 113: 1435–49.
[28]
Ying Q-L, Wray J, Nichols J, Batlle-Morera L, Doble B (2008) The ground state of embryonic stem cell self-renewal. Nature. 453. : 519–23. doi:10.1038/nature06968.
[29]
Farah MH, Olson JM, Sucic HB, Hume RI, Tapscott SJ (2000) Generation of neurons by transient expression of neural bHLH proteins in mammalian cells. Development (Cambridge, England) 127: 693–702.
[30]
Heinrich C, Blum R, Gascón S, Masserdotti G, Tripathi P (2010) Directing astroglia from the cerebral cortex into subtype specific functional neurons. PLoS biology. 8. doi:10.1371/journal.pbio.1000373.
[31]
Fode C, Gradwohl G, Morin X, Dierich A, LeMeur M (1998) The bHLH protein NEUROGENIN 2 is a determination factor for epibranchial placode-derived sensory neurons. Neuron 20: 483–94.
[32]
Mattar P, Langevin LM, Markham K, Klenin N, Shivji S (2008) Basic helix-loop-helix transcription factors cooperate to specify a cortical projection neuron identity. Molecular and cellular biology. 28. : 1456–69. doi:10.1128/MCB.01510-07.
[33]
Mizuguchi R, Sugimori M, Takebayashi H, Kosako H, Nagao M (2001) Combinatorial roles of olig2 and neurogenin2 in the coordinated induction of pan-neuronal and subtype-specific properties of motoneurons. Neuron 31: 757–71.
[34]
Novitch BG, Chen AI, Jessell TM (2001) Coordinate regulation of motor neuron subtype identity and pan-neuronal properties by the bHLH repressor Olig2. Neuron 31: 773–89.
[35]
Zhou Q, Anderson DJ (2002) The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell 109: 61–73.
[36]
Scardigli R, Schuurmans C, Gradwohl G, Guillemot F (2001) Crossregulation between Neurogenin2 and pathways specifying neuronal identity in the spinal cord. Neuron 31: 203–17.
[37]
Scardigli R (2003) Direct and concentration-dependent regulation of the proneural gene Neurogenin2 by Pax6. Development. 130. : 3269–3281. doi:10.1242/dev.00539.
[38]
Thoma EC, Wagner TU, Weber IP, Herpin A, Fischer A (2010) Ectopic expression of single transcription factors directs differentiation of a Medaka spermatogonial cell line. Stem cells and development. doi:10.1089/scd.2010.0290.
[39]
Béjar J, Hong Y, Schartl M (2003) Mitf expression is sufficient to direct differentiation of medaka blastula derived stem cells to melanocytes. Development (Cambridge, England) 130: 6545–53.
[40]
Suter DM, Tirefort D, Julien S, Krause K-H (2009) A Sox1 to Pax6 switch drives neuroectoderm to radial glia progression during differentiation of mouse embryonic stem cells. Stem cells (Dayton, Ohio). 27. : 49–58. doi:10.1634/ stemcells.2008-0319.
[41]
Menn B, Garcia-Verdugo JM, Yaschine C, Gonzalez-Perez O, Rowitch D (2006) Origin of oligodendrocytes in the subventricular zone of the adult brain. The Journal of neuroscience?: the official journal of the Society for Neuroscience. 26. : 7907–18. doi:10.1523/JNEUROSCI.1299-06.2006.
[42]
Schuurmans C, Armant O, Nieto M, Stenman JM, Britz O (2004) Sequential phases of cortical specification involve Neurogenin-dependent and -independent pathways. The EMBO journal. 23. : 2892–902. doi:10.1038/sj.emboj.7600278.
[43]
Tropepe V, Hitoshi S, Sirard C, Mak TW, Rossant J (2001) Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron 30: 65–78.
[44]
Wiles MV, Johansson BM (1999) Embryonic stem cell development in a chemically defined medium. Experimental cell research. 247. : 241–8. doi:10.1006/excr.1998.4353.
[45]
Smith AG, Heath JK, Donaldson DD, Wong GG, Moreau J (1988) Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature. 336. : 688–90. doi:10.1038/336688a0.
[46]
Williams RL, Hilton DJ, Pease S, Willson TA, Stewart CL (1988) Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature. 336. : 684–7. doi:10.1038/336684a0.
[47]
Ying Q-L, Stavridis M, Griffiths D, Li M, Smith A (2003) Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nature biotechnology. 21. : 183–6. doi:10.1038/nbt780.
[48]
Kobayashi T, Mizuno H, Imayoshi I, Furusawa C, Shirahige K (2009) The cyclic gene Hes1 contributes to diverse differentiation responses of embryonic stem cells. Genes & Development. 23. : 1870–1875. doi:10.1101/gad.1823109.1870.
[49]
Sommer L, Ma Q, Anderson DJ (1996) neurogenins, a novel family of atonal-related bHLH transcription factors, are putative mammalian neuronal determination genes that reveal progenitor cell heterogeneity in the developing CNS and PNS. Molecular and cellular neurosciences. 8. : 221–41. doi:10.1006/mcne.1996.0060.
[50]
Blader P, Fischer N, Gradwohl G, Guillemot F, Str?hle U (1997) The activity of neurogenin1 is controlled by local cues in the zebrafish embryo. Development (Cambridge, England) 124: 4557–69.
[51]
Thoma EC, Maurus K, Wagner TU, Schartl M (2012) Parallel Differentiation of Embryonic Stem Cells into Different Cell Types by a Single Gene-Based Differentiation System. Cellular reprogramming. doi:10.1089/cell.2011.0067.