全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Oxytocin and Vasopressin Are Dysregulated in Williams Syndrome, a Genetic Disorder Affecting Social Behavior

DOI: 10.1371/journal.pone.0038513

Full-Text   Cite this paper   Add to My Lib

Abstract:

The molecular and neural mechanisms regulating human social-emotional behaviors are fundamentally important but largely unknown; unraveling these requires a genetic systems neuroscience analysis of human models. Williams Syndrome (WS), a condition caused by deletion of ~28 genes, is associated with a gregarious personality, strong drive to approach strangers, difficult peer interactions, and attraction to music. WS provides a unique opportunity to identify endogenous human gene-behavior mechanisms. Social neuropeptides including oxytocin (OT) and arginine vasopressin (AVP) regulate reproductive and social behaviors in mammals, and we reasoned that these might mediate the features of WS. Here we established blood levels of OT and AVP in WS and controls at baseline, and at multiple timepoints following a positive emotional intervention (music), and a negative physical stressor (cold). We also related these levels to standardized indices of social behavior. Results revealed significantly higher median levels of OT in WS versus controls at baseline, with a less marked increase in AVP. Further, in WS, OT and AVP increased in response to music and to cold, with greater variability and an amplified peak release compared to controls. In WS, baseline OT but not AVP, was correlated positively with approach, but negatively with adaptive social behaviors. These results indicate that WS deleted genes perturb hypothalamic-pituitary release not only of OT but also of AVP, implicating more complex neuropeptide circuitry for WS features and providing evidence for their roles in endogenous regulation of human social behavior. The data suggest a possible biological basis for amygdalar involvement, for increased anxiety, and for the paradox of increased approach but poor social relationships in WS. They also offer insight for translating genetic and neuroendocrine knowledge into treatments for disorders of social behavior.

References

[1]  Adolphs R (2009) The social brain: neural basis of social knowledge. Annu Rev Psychol 60: 693–716.
[2]  Bos PA, Panksepp J, Bluthe RM, Honk JV (2012) Acute effects of steroid hormones and neuropeptides on human social-emotional behavior: A review of single administration studies. Front Neuroendocrinol 33: 17–35.
[3]  Choleris E, Devidze N, Kavaliers M, Pfaff DW (2008) Steroidal/neuropeptide interactions in hypothalamus and amygdala related to social anxiety. Prog Brain Res 170: 291–303.
[4]  Jarvinen-Pasley A, Vines BW, Hill KJ, Yam A, Grichanik M, et al. (2010) Cross-modal influences of affect across social and non-social domains in individuals with Williams syndrome. Neuropsychologia 48: 456–66.
[5]  Korenberg JR, Dai L, Bellugi U, Jarvinen-Pasley A, Mills DL, et al. (2008) Deletion of 7q11.23 Genes and Williams syndrome. In: Epstein C, Erickson , RP , Wynshaw-Boris A, editors. pp. 1544–1552. Inborn Errors of Development: The Molecular Basis of Clinical Disorders of Morphogenesis.
[6]  Levitin DJ (2005) Musical behavior in a neurogenetic developmental disorder: evidence from Williams Syndrome. Ann N Y Acad Sci 1060: 325–334.
[7]  Levitin DJ, Menon V, Schmitt JE, Eliez S, White CD, et al. (2003) Neural correlates of auditory perception in Williams syndrome: an fMRI study. Neuroimage 18: 74–82.
[8]  Cherniske EM, Carpenter TO, Klaiman C, Young E, Bregman J, et al. (2004) Multisystem study of 20 older adults with Williams syndrome. Am J Med Genet A 131: 255–264.
[9]  Semel E, Rosner SR (2003) Understanding Williams Syndrome: Behavioural Patterns and Interventions. : Lawrence Erlbaum Associates, Mahwah, NJ.
[10]  Meyer-Lindenberg A (2008) Impact of prosocial neuropeptides on human brain function. Prog Brain Res 170: 463–470.
[11]  Haas BW, Mills D, Yam A, Hoeft F, Bellugi U, et al. (2009) Genetic influences on sociability: heightened amygdala reactivity and event-related responses to positive social stimuli in Williams syndrome. J Neurosci 29: 1132–1139.
[12]  Meyer-Lindenberg A, Hariri AR, Munoz KE, Mervis CB, Mattay VS, et al. (2005) Neural correlates of genetically abnormal social cognition in Williams syndrome. Nat Neurosci 8: 991–993.
[13]  Dai L, Bellugi U, Chen XN, Pulst-Korenberg AM, Jarvinen-Pasley A, et al. (2009) Is it Williams syndrome? GTF2IRD1 implicated in visual-spatial construction and GTF2I in sociability revealed by high resolution arrays. Am J Med Genet A 149A: 302–314.
[14]  Hirota H, Matsuoka R, Chen XN, Salandanan LS, Lincoln A, et al. (2003) Williams syndrome deficits in visual spatial processing linked to GTF2IRD1 and GTF2I on chromosome 7q11.23. Genet Med 5: 311–321.
[15]  Carter CS, Grippo AJ, Pournajafi-Nazarloo H, Ruscio MG, Porges SW (2008) Oxytocin, vasopressin and sociality. Prog Brain Res 170: 331–336.
[16]  Cyranowski JM, Hofkens TL, Frank E, Seltman H, Cai HM, et al. (2008) Evidence of dysregulated peripheral oxytocin release among depressed women. Psychosom Med 70: 967–975.
[17]  Heinrichs M, von Dawans B, Domes G (2009) Oxytocin, vasopressin, and human social behavior. Front Neuroendocrinol 30: 548–557.
[18]  Wang Z, Ferris CF, De Vries GJ (1994) Role of septal vasopressin innervation in paternal behavior in prairie voles (Microtus ochrogaster). Proc Natl Acad Sci U S A 91: 400–404.
[19]  Bartz JA, Zaki J, Bolger N, Ochsner KN (2011) Social effects of oxytocin in humans: context and person matter. Trends Cogn Sci 15: 301–9.
[20]  Baumgartner T, Heinrichs M, Vonlanthen A, Fischbacher U, Fehr E (2008) Oxytocin shapes the neural circuitry of trust and trust adaptation in humans. Neuron 58: 639–650.
[21]  De Dreu CK, Greer LL, Handgraaf MJ, Shalvi S, Van Kleef GA, et al. (2010) The neuropeptide oxytocin regulates parochial altruism in intergroup conflict among humans. Science 328: 1408–1411.
[22]  Guastella AJ, Mitchell PB, Dadds MR (2008) Oxytocin increases gaze to the eye region of human faces. Biol Psychiatry 63: 3–5.
[23]  Heinrichs M, Baumgartner T, Kirschbaum C, Ehlert U (2003) Social support and oxytocin interact to suppress cortisol and subjective responses to psychosocial stress. Biol Psychiatry 54: 1389–1398.
[24]  Hurlemann R, Patin A, Onur OA, Cohen MX, Baumgartner T, et al. (2010) Oxytocin enhances amygdala-dependent, socially reinforced learning and emotional empathy in humans. J Neurosci 30: 4999–5007.
[25]  Kirsch P, Esslinger C, Chen Q, Mier D, Lis S, et al. (2005) Oxytocin modulates neural circuitry for social cognition and fear in humans. J Neurosci 25: 11489–11493.
[26]  Kosfeld M, Heinrichs M, Zak PJ, Fischbacher U, Fehr E (2005) Oxytocin increases trust in humans. Nature 435: 673–676.
[27]  Rimmele U, Hediger K, Heinrichs M, Klaver P (2009) Oxytocin makes a face in memory familiar. J Neurosci 29: 38–42.
[28]  Seltzer LJ, Ziegler TE, Pollak SD (2010) Social vocalizations can release oxytocin in humans. Proc Biol Sci 277: 2661–2666.
[29]  Goldman M, Marlow-O’Connor M, Torres I, Carter CS (2008) Diminished plasma oxytocin in schizophrenic patients with neuroendocrine dysfunction and emotional deficits. Schizophr Res 98: 247–255.
[30]  Hoge EA, Pollack MH, Kaufman RE, Zak PJ, Simon NM (2008) Oxytocin levels in social anxiety disorder. CNS Neurosci Ther 14: 165–170.
[31]  Modahl C, Green L, Fein D, Morris M, Waterhouse L, et al. (1998) Plasma oxytocin levels in autistic children. Biological Psychiatry 43: 270–277.
[32]  Rubin LH, Carter CS, Drogos L, Pournajafi-Nazarloo H, Sweeney JA, et al. (2010) Peripheral oxytocin is associated with reduced symptom severity in schizophrenia. Schizophr Res 124: 13–21.
[33]  Leckman JF, Goodman WK, North WG, Chappell PB, Price LH, et al. (1994) The role of central oxytocin in obsessive compulsive disorder and related normal behavior. Psychoneuroendocrinology 19: 723–749.
[34]  Zak PJ, Kurzban R, Matzner WT (2005) Oxytocin is associated with human trustworthiness. Horm Behav 48: 522–527.
[35]  Caldwell HK, Lee HJ, Macbeth AH, Young WS 3rd (2008) Vasopressin: behavioral roles of an “original” neuropeptide. Prog Neurobiol 84: 1–24.
[36]  Carter CS (2007) Sex differences in oxytocin and vasopressin: implications for autism spectrum disorders? Behav Brain Res 176: 170–186.
[37]  Goodson JL, Thompson RR (2010) Nonapeptide mechanisms of social cognition, behavior and species-specific social systems. Curr Opin Neurobiol 20: 784–794.
[38]  Cho MM, DeVries AC, Williams JR, Carter CS (1999) The effects of oxytocin and vasopressin on partner preferences in male and female prairie voles (Microtus ochrogaster). Behav Neurosci 113: 1071–1079.
[39]  Pedersen FA, Sullivan EJ (1964) Relationships among Geographical Mobility, Parental Attitudes and Emotional Disturbances in Children. Am J Orthopsychiatry 34: 575–580.
[40]  Ferris C (1992) Role of vasopressin in aggressive and dominant/subordinate behaviors. Ann N Y Acad Sci 652: 212–226.
[41]  Thompson RR, Walton JC (2004) Peptide effects on social behavior: effects of vasotocin and isotocin on social approach behavior in male goldfish (Carassius auratus). Behav Neurosci 118: 620–626.
[42]  Carter CS (1998) Neuroendocrine perspectives on social attachment and love. Psychoneuroendocrinology 23: 779–818.
[43]  Gamer M, Zurowski B, Buchel C (2010) Different amygdala subregions mediate valence-related and attentional effects of oxytocin in humans. Proc Natl Acad Sci U S A 107: 9400–9405.
[44]  Riby D, Hancock PJ (2009) Looking at movies and cartoons: eye-tracking evidence from Williams syndrome and autism. J Intellect Disabil Res 53: 169–181.
[45]  Koelsch S (2010) Towards a neural basis of music-evoked emotions. Trends Cogn Sci 14: 131–137.
[46]  Trehub SE (2001) Musical predispositions in infancy. Ann N Y Acad Sci 930: 1–16.
[47]  Bartels A, Zeki S (2000) The neural basis of romantic love. Neuroreport 11: 3829–3834.
[48]  Adolphs R, Tranel D, Damasio H, Damasio AR (1995) Fear and the human amygdala. J Neurosci 15: 5879–5891.
[49]  Nilsson U (2009) Soothing music can increase oxytocin levels during bed rest after open-heart surgery: a randomised control trial. J Clin Nurs 18: 2153–2161.
[50]  Bachner-Melman R, Dina C, Zohar AH, Constantini N, Lerer E, et al. (2005) AVPR1a and SLC6A4 gene polymorphisms are associated with creative dance performance. PLoS Genet 1: e42.
[51]  Ebstein RP, Israel S, Chew SH, Zhong S, Knafo A (2010) Genetics of human social behavior. Neuron 65: 831–844.
[52]  Ukkola LT, Onkamo P, Raijas P, Karma K, Jarvela I (2009) Musical aptitude is associated with AVPR1A-haplotypes. PLoS One 4: e5534.
[53]  Adolphs R, Baron-Cohen S, Tranel D (2002) Impaired recognition of social emotions following amygdala damage. J Cogn Neurosci 14: 1264–1274.
[54]  Blood AJ, Zatorre RJ (2001) Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proc Natl Acad Sci U S A 98: 11818–11823.
[55]  Juslin PN, Sloboda JA (2001) Music and Emotion: Theory and Research. New York: Oxford University Press.
[56]  Sanders G, Freilicher J, Lightman SL (1990) Psychological stress of exposure to uncontrollable noise increases plasma oxytocin in high emotionality women. Psychoneuroendocrinology 15: 47–58.
[57]  Zink CF, Stein JL, Kempf L, Hakimi S, Meyer-Lindenberg A (2010) Vasopressin modulates medial prefrontal cortex-amygdala circuitry during emotion processing in humans. J Neurosci 30: 7017–7022.
[58]  Adolphs R, Tranel D, Damasio AR (1998) The human amygdala in social judgment. Nature 393: 470–474.
[59]  Bellugi U, Adolphs R, Cassady C, Chiles M (1999) Towards the neural basis for hypersociability in a genetic syndrome. Neuroreport 10: 1653–1657.
[60]  Bruininks RH, Woodcock RW, Weatherman RE, Hill B (1996) Scales of Independent Behavior-Revised (SIB-R). Chicago, IL: Riverside Publishing.
[61]  Jones W, Bellugi U, Lai Z, Chiles M, Reilly J, et al. (2000) II. Hypersociability in Williams Syndrome. J Cogn Neurosci 12: 30–46.
[62]  Korenberg JR, Chen XN, Hirota H, Lai Z, Bellugi U, et al. (2000) VI. Genome structure and cognitive map of Williams syndrome. J Cogn Neurosci 12: 89–107.
[63]  Levitin DJ, Cole K, Chiles M, Lai Z, Lincoln A, et al. (2004) Characterizing the musical phenotype in individuals with Williams Syndrome. Child Neuropsychol 10: 223–247.
[64]  Thaut MH, Davis WB (1993) The influence of subject-selected versus experiment-chosen music on affect, anxiety, and relaxation. J Music Therapy 30: 210–223.
[65]  Belo CJ, Bruckmaier RM (2010) Suitability of low-dosage oxytocin treatment to induce milk ejection in dairy cows. J Dairy Sci 93: 63–69.
[66]  Morin V, Del CastilloJR, Authier S, Ybarra N, Otis C, et al. (2008) Evidence for non-linear pharmacokinetics of oxytocin in anesthetizetized rat. J Pharm Pharm Sci 11: 12–24.
[67]  Murphy DJ, Carey M, Montgomery AA, Sheehan SR (2009) Study protocol. ECSSIT - Elective Caesarean Section Syntocinon Infusion Trial. A multi-centre randomised controlled trial of oxytocin (Syntocinon) 5 IU bolus and placebo infusion versus oxytocin 5 IU bolus and 40 IU infusion for the control of blood loss at elective caesarean section. BMC Pregnancy Childbirth 9: 36.
[68]  Carter CS, Pournajafi-Nazarloo H, Kramer KM, Ziegler TE, White-Traut R, et al. (2007) Oxytocin: behavioral associations and potential as a salivary biomarker. Ann N Y Acad Sci 1098: 312–322.
[69]  Juslin PN, Laukka P (2001) Impact of intended emotion intensity on cue utilization and decoding accuracy in vocal expression of emotion. Emotion 1: 381–412.
[70]  Fitzmaurice G, Laird NM, Ware JH (2004) Applied Longitudinal Analysis. New York: Wiley.
[71]  Gouin JP, Carter CS, Pournajafi-Nazarloo H, Glaser R, Malarkey WB, et al. (2010) Marital behavior, oxytocin, vasopressin, and wound healing. Psychoneuroendocrinology 35: 1082–90.
[72]  Bartz J, Simeon D, Hamilton H, Kim S, Crystal S, et al. (2010) Oxytocin can hinder trust and cooperation in borderline personality disorder. Soc Cogn Affect Neurosci 6: 556–63.
[73]  Bartz JA, Zaki J, Ochsner KN, Bolger N, Kolevzon A, et al. (2010) Effects of oxytocin on recollections of maternal care and closeness. Proc Natl Acad Sci U S A 107: 21371–21375.
[74]  Declerck CH, Boone C, Kiyonari T (2010) Oxytocin and cooperation under conditions of uncertainty: the modulating role of incentives and social information. Horm Behav 57: 368–374.
[75]  Taylor SE, Gonzaga GC, Klein LC, Hu P, Greendale GA, et al. (2006) Relation of oxytocin to psychological stress responses and hypothalamic-pituitary-adrenocortical axis activity in older women. Psychosom Med 68: 238–245.
[76]  Taylor SE, Saphire-Bernstein S, Seeman TE (2010) Are plasma oxytocin in women and plasma vasopressin in men biomarkers of distressed pair-bond relationships? Psychol Sci 21: 3–7.
[77]  Turner RA, Altemus M, Enos T, Cooper B, McGuinness T (1999) Preliminary research on plasma oxytocin in normal cycling women: investigating emotion and interpersonal distress. Psychiatry 62: 97–113.
[78]  Gothelf D, Searcy YM, Reilly J, Lai PT, Lanre-Amos T, et al. (2008) Association between cerebral shape and social use of language in Williams syndrome. Am J Med Genet A 146A: 2753–2761.
[79]  Reilly J, Klima ES, Bellugi U (1990) Once more with feeling: Affect and language in children from atypical populations. Development and Psychopathology.2,4 367–392 Development and Psychopathology 2: 367–392.
[80]  Rosner S (2003) Understanding Williams Syndrome: Behavioural Patterns and Interventions. Mahwah, NJ: Lawrence Erlbaum Associates.
[81]  Jansen LM, Gispen-de Wied CC, Wiegant VM, Westenberg HG, Lahuis BE, et al. (2006) Autonomic and neuroendocrine responses to a psychosocial stressor in adults with autistic spectrum disorder. J Autism Dev Disord 36: 891–899.
[82]  Brownstein MJ, Russell JT, Gainer H (1980) Synthesis, transport, and release of posterior pituitary hormones. Science 207: 373–378.
[83]  Landgraf R, Neumann ID (2004) Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication. Front Neuroendocrinol 25: 150–176.
[84]  Engelmann M, Wotjak CT, Ebner K, Landgraf R (2000) Behavioural impact of intraseptally released vasopressin and oxytocin in rats. Exp Physiol 85 Spec No. pp. 125S–130S.
[85]  Nishioka T, Anselmo-Franci JA, Li P, Callahan MF, Morris M (1998) Stress increases oxytocin release within the hypothalamic paraventricular nucleus. Brain Res 781: 56–60.
[86]  Wotjak CT, Ganster J, Kohl G, Holsboer F, Landgraf R, et al. (1998) Dissociated central and peripheral release of vasopressin, but not oxytocin, in response to repeated swim stress: new insights into the secretory capacities of peptidergic neurons. Neuroscience 85: 1209–1222.
[87]  Born J, Lange T, Kern W, McGregor GP, Bickel U, et al. (2002) Sniffing neuropeptides: a transnasal approach to the human brain. Nat Neurosci 5: 514–516.
[88]  Kennedy DP, Adolphs R (2010) Impaired fixation to eyes following amygdala damage arises from abnormal bottom-up attention. Neuropsychologia 48: 3392–3398.
[89]  Van Essen DC, Dierker D, Snyder AZ, Raichle ME, Reiss AL, et al. (2006) Symmetry of cortical folding abnormalities in Williams syndrome revealed by surface-based analyses. J Neurosci 26: 5470–5483.
[90]  Mervis CB, Morris CA, Klein-Tasman BP, Bertrand J, Kwitny S, et al. (2003) Attentional characteristics of infants and toddlers with Williams syndrome during triadic interactions. Dev Neuropsychol 23: 243–268.
[91]  Riby DM, Jones N, Brown PH, Robinson LJ, Langton SR, et al. (2011) Attention to Faces in Williams Syndrome. J Autism Dev Disord 41: 1228–39.
[92]  Guastella AJ, Kenyon AR, Alvares GA, Carson DS, Hickie IB (2010) Intranasal arginine vasopressin enhances the encoding of happy and angry faces in humans. Biol Psychiatry 67: 1220–1222.
[93]  Thompson R, Gupta S, Miller K, Mills S, Orr S (2004) The effects of vasopressin on human facial responses related to social communication. Psychoneuroendocrinology 29: 35–48.
[94]  Knobloch HS, Charlet A, Hoffmann LC, Eliava M, Khrulev S, et al. (2012) Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron 73: 553–566.
[95]  Dykens EM, Rosner BA, Ly T, Sagun J (2005) Music and anxiety in Williams syndrome: a harmonious or discordant relationship? Am J Ment Retard 110: 346–358.
[96]  Zarchi O, Attias J, Gothelf D (2010) Auditory and visual processing in Williams syndrome. Isr J Psychiatry Relat Sci 47: 125–131.
[97]  Pober BR (2010) Williams-Beuren syndrome. N Engl J Med 362: 239–252.
[98]  Falke N (1989) Oxytocin stimulates oxytocin release from isolated nerve terminals of rat neural lobes. Neuropeptides 14: 269–274.
[99]  Yee JR, Frijling J, Saber M, Sterlinski A, Tovar S, et al. (2010) Oxytocin alters the behavioral, cardiovascular, and hormonal responses to a mild daily stressor. Soc Neurosci Abstr.
[100]  Gregory SG, Connelly JJ, Towers AJ, Johnson J, Biscocho D, et al. (2009) Genomic and epigenetic evidence for oxytocin receptor deficiency in autism. BMC Med 7: 62.
[101]  Plesa Skwerer D, Borum L, Verbalis A, Schofield C, Crawford N, et al. (2009) Autonomic responses to dynamic displays of facial expressions in adolescents and adults with Williams syndrome. Soc Cogn Affect Neurosci 4: 93–100.
[102]  Brunton PJ, Russell JA (2008) The expectant brain: adapting for motherhood. Nat Rev Neurosci 9: 11–25.
[103]  Jarvinen-Pasley A, Bellugi U, Reilly J, Mills DL, Galaburda A, et al. (2008) Defining the social phenotype in Williams syndrome: a model for linking gene, the brain, and behavior. Dev Psychopathol 20: 1–35.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133