To elucidate the transcriptional regulation of Bmp4 expression during organogenesis, we used phylogenetic footprinting and transgenic reporter analyses to identify Bmp4 cis-regulatory modules (CRMs). These analyses identified a regulatory region located ~46 kb upstream of the mouse Bmp4 transcription start site that had previously been shown to direct expression in lateral plate mesoderm. We refined this regulatory region to a 396-bp minimal enhancer, and show that it recapitulates features of endogenous Bmp4 expression in developing mandibular arch ectoderm and incisor epithelium during the initiation-stage of tooth development. In addition, this enhancer directs expression in the apical ectodermal ridge (AER) of the developing limb and in anterior and posterior limb mesenchyme. Transcript profiling of E11.5 mouse incisor dental lamina, together with protein binding microarray (PBM) analyses, allowed identification of a conserved DNA binding motif in the Bmp4 enhancer for Pitx homeoproteins, which are also expressed in the developing mandibular and incisor epithelium. In vitro electrophoretic mobility shift assays (EMSA) and in vivo transgenic reporter mutational analyses revealed that this site supports Pitx binding and that the site is necessary to recapitulate aspects of endogenous Bmp4 expression in developing craniofacial and limb tissues. Finally, Pitx2 chromatin immunoprecipitation (ChIP) demonstrated direct binding of Pitx2 to this Bmp4 enhancer site in a dental epithelial cell line. These results establish a direct molecular regulatory link between Pitx family members and Bmp4 gene expression in developing incisor epithelium.
References
[1]
Chandler KJ, Chandler RL, Mortlock DP (2009) Identification of an ancient Bmp4 mesoderm enhancer located 46 kb from the promoter. Dev Biol 327: 590–602. doi:10.1016/j.ydbio.2008.12.033.
[2]
Hogan BL (1996) Bone morphogenetic proteins in development. Curr Opin Genet Dev 6: 432–438.
[3]
Zhao G-Q (2003) Consequences of knocking out BMP signaling in the mouse. Genesis 35: 43–56. doi:10.1002/gene.10167.
[4]
Jones CM, Lyons KM, Hogan BL (1991) Involvement of Bone Morphogenetic Protein-4 (BMP-4) and Vgr-1 in morphogenesis and neurogenesis in the mouse. Development 111: 531–542.
[5]
Hogan BL (1996) Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev 10: 1580–1594.
[6]
Andl T, Ahn K, Kairo A, Chu EY, Wine-Lee L, et al. (2004) Epithelial Bmpr1a regulates differentiation and proliferation in postnatal hair follicles and is essential for tooth development. Development 131: 2257–2268. doi:10.1242/dev.01125.
[7]
Liu W, Selever J, Murali D, Sun X, Brugger SM, et al. (2005) Threshold-specific requirements for Bmp4 in mandibular development. Dev Biol 283: 282–293. doi:10.1016/j.ydbio.2005.04.019.
[8]
Robert B (2007) Bone morphogenetic protein signaling in limb outgrowth and patterning. Dev Growth Differ 49: 455–468. doi 10(1111/j.1440-169X.2007.00946): x.
[9]
Selever J, Liu W, Lu M-F, Behringer RR, Martin JF (2004) Bmp4 in limb bud mesoderm regulates digit pattern by controlling AER development. Dev Biol 276: 268–279. doi:10.1016/j.ydbio.2004.08.024.
[10]
Liu W, Sun X, Braut A, Mishina Y, Behringer RR, et al. (2005) Distinct functions for Bmp signaling in lip and palate fusion in mice. Development 132: 1453–1461. doi:10.1242/dev.01676.
[11]
Chen Y, Bei M, Woo I, Satokata I, Maas R (1996) Msx1 controls inductive signaling in mammalian tooth morphogenesis. Development 122: 3035–3044.
[12]
Ohazama A, Tucker A, Sharpe PT (2005) Organized tooth-specific cellular differentiation stimulated by BMP4. J Dent Res 84: 603–606.
[13]
Plikus MV, Zeichner-David M, Mayer J-A, Reyna J, Bringas P, et al. (2005) Morphoregulation of teeth: modulating the number, size, shape and differentiation by tuning Bmp activity. Evol Dev 7: 440–457. doi 10(1111/j.1525–142X.2005.05048): x.
[14]
Ahn K, Mishina Y, Hanks MC, Behringer RR, Crenshaw EB 3rd (2001) BMPR-IA signaling is required for the formation of the apical ectodermal ridge and dorsal-ventral patterning of the limb. Development 128: 4449–4461.
[15]
Pizette S, Abate-Shen C, Niswander L (2001) BMP controls proximodistal outgrowth, via induction of the apical ectodermal ridge, and dorsoventral patterning in the vertebrate limb. Development 128: 4463–4474.
[16]
Wang C-KL, Omi M, Ferrari D, Cheng H-C, Lizarraga G, et al. (2004) Function of BMPs in the apical ectoderm of the developing mouse limb. Dev Biol 269: 109–122. doi:10.1016/j.ydbio.2004.01.016.
[17]
Bandyopadhyay A, Tsuji K, Cox K, Harfe BD, Rosen V, et al. (2006) Genetic analysis of the roles of BMP2, BMP4, and BMP7 in limb patterning and skeletogenesis. PLoS Genet 2: e216. doi:10.1371/journal.pgen.0020216.
[18]
Bénazet J-D, Bischofberger M, Tiecke E, Gon?alves A, Martin JF, et al. (2009) A self-regulatory system of interlinked signaling feedback loops controls mouse limb patterning. Science 323: 1050–1053. doi:10.1126/science.1168755.
[19]
O’Connell DJ, Ho JWK, Mammoto T, Turbe-Doan A, O’Connell JT, et al. (2012) A Wnt-bmp feedback circuit controls intertissue signaling dynamics in tooth organogenesis. Sci Signal 5: ra4. doi:10.1126/scisignal.2002414.
[20]
Newburger DE, Bulyk ML (2009) UniPROBE: an online database of protein binding microarray data on protein-DNA interactions. Nucleic Acids Res 37: D77–82. doi:10.1093/nar/gkn660.
[21]
Robasky K, Bulyk ML (2011) UniPROBE, update 2011: expanded content and search tools in the online database of protein-binding microarray data on protein-DNA interactions. Nucleic Acids Res 39: D124–128. doi:10.1093/nar/gkq992.
[22]
Semina EV, Reiter R, Leysens NJ, Alward WL, Small KW, et al. (1996) Cloning and characterization of a novel bicoid-related homeobox transcription factor gene, RIEG, involved in Rieger syndrome. Nat Genet 14: 392-399. doi. pp. 10.1038/ng1296–392.
[23]
Lanct?t C, Lamolet B, Drouin J (1997) The bicoid-related homeoprotein Ptx1 defines the most anterior domain of the embryo and differentiates posterior from anterior lateral mesoderm. Development 124: 2807–2817.
[24]
Gurnett CA, Alaee F, Kruse LM, Desruisseau DM, Hecht JT, et al. (2008) Asymmetric lower-limb malformations in individuals with homeobox PITX1 gene mutation. Am J Hum Genet 83: 616–622. doi:10.1016/j.ajhg.2008.10.004.
[25]
Mitsiadis TA, Drouin J (2008) Deletion of the Pitx1 genomic locus affects mandibular tooth morphogenesis and expression of the Barx1 and Tbx1 genes. Dev Biol 313: 887–896. doi:10.1016/j.ydbio.2007.10.055.
[26]
Lin CR, Kioussi C, O’Connell S, Briata P, Szeto D, et al. (1999) Pitx2 regulates lung asymmetry, cardiac positioning and pituitary and tooth morphogenesis. Nature 401: 279–282. doi:10.1038/45803.
[27]
Lu MF, Pressman C, Dyer R, Johnson RL, Martin JF (1999) Function of Rieger syndrome gene in left-right asymmetry and craniofacial development. Nature 401: 276–278. doi:10.1038/45797.
[28]
Marcil A, Dumontier E, Chamberland M, Camper SA, Drouin J (2003) Pitx1 and Pitx2 are required for development of hindlimb buds. Development 130: 45–55.
[29]
Thomas JW, Touchman JW, Blakesley RW, Bouffard GG, Beckstrom-Sternberg SM, et al. (2003) Comparative analyses of multi-species sequences from targeted genomic regions. Nature 424: 788–793. doi:10.1038/nature01858.
[30]
Lenhard B, Sandelin A, Mendoza L, Engstr?m P, Jareborg N, et al. (2003) Identification of conserved regulatory elements by comparative genome analysis. J Biol 2: 13. doi. pp. 10.1186/1475–924-2-13.
[31]
Wasserman WW, Sandelin A (2004) Applied bioinformatics for the identification of regulatory elements. Nat Rev Genet 5: 276–287. doi:10.1038/nrg1315.
[32]
Feng JQ, Chen D, Cooney AJ, Tsai MJ, Harris MA, et al. (1995) The mouse bone morphogenetic protein-4 gene. Analysis of promoter utilization in fetal rat calvarial osteoblasts and regulation by COUP-TFI orphan receptor. J Biol Chem 270: 28364–28373.
[33]
Kurihara T, Kitamura K, Takaoka K, Nakazato H (1993) Murine bone morphogenetic protein-4 gene: existence of multiple promoters and exons for the 5′-untranslated region. Biochem Biophys Res Commun 192: 1049–1056. doi:10.1006/bbrc.1993.1523.
[34]
Schwartz S, Zhang Z, Frazer KA, Smit A, Riemer C, et al. (2000) PipMaker–a web server for aligning two genomic DNA sequences. Genome Res 10: 577–586.
[35]
Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, et al. (2003) Human-mouse alignments with BLASTZ. Genome Res 13: 103–107. doi:10.1101/gr.809403.
[36]
Ahituv N, Rubin EM, Nobrega MA (2004) Exploiting human–fish genome comparisons for deciphering gene regulation. Hum Mol Genet 13 Spec No 2: R261–266. doi:10.1093/hmg/ddh229.
[37]
Koop BF, Nadeau JH (1996) Pufferfish and new paradigm for comparative genome analysis. Proc Natl Acad Sci USA 93: 1363–1365.
[38]
Nobrega MA, Ovcharenko I, Afzal V, Rubin EM (2003) Scanning human gene deserts for long-range enhancers. Science 302: 413. doi:10.1126/science.1088328.
[39]
Loots GG, Locksley RM, Blankespoor CM, Wang ZE, Miller W, et al. (2000) Identification of a coordinate regulator of interleukins 4, 13, and 5 by cross-species sequence comparisons. Science 288: 136–140.
[40]
Santagati F, Abe K, Schmidt V, Schmitt-John T, Suzuki M, et al. (2003) Identification of Cis-regulatory elements in the mouse Pax9/Nkx2-9 genomic region: implication for evolutionary conserved synteny. Genetics 165: 235–242.
[41]
Bejerano G, Haussler D, Blanchette M (2004) Into the heart of darkness: large-scale clustering of human non-coding DNA. Bioinformatics 20 Suppl 1: i40–48. doi:10.1093/bioinformatics/bth946.
[42]
Van den Wijngaard A, Pijpers MA, Joosten PH, Roelofs JM, Van zoelenE J, et al. (1999) Functional characterization of two promoters in the human bone morphogenetic protein-4 gene. J Bone Miner Res 14: 1432–1441. doi:10.1359/jbmr.1999.14.8.1432.
[43]
Feng JQ, Zhang J, Tan X, Lu Y, Guo D, et al. (2002) Identification of cis-DNA regions controlling Bmp4 expression during tooth morphogenesis in vivo. J Dent Res 81: 6–10.
[44]
Zhang J, Tan X, Contag CH, Lu Y, Guo D, et al. (2002) Dissection of promoter control modules that direct Bmp4 expression in the epithelium-derived components of hair follicles. Biochem Biophys Res Commun 293: 1412–1419. doi. pp. 10.1016/S0006–291X(02)00416-3.
[45]
Lawson KA, Dunn NR, Roelen BA, Zeinstra LM, Davis AM, et al. (1999) Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev 13: 424–436.
[46]
Aberg T, Wozney J, Thesleff I (1997) AID-AJA3>3.0.CO;2-C.
[47]
Thesleff I, Ker?nen S, Jernvall J (2001) Enamel knots as signaling centers linking tooth morphogenesis and odontoblast differentiation. Adv Dent Res 15: 14–18.
[48]
Lanct?t C, Moreau A, Chamberland M, Tremblay ML, Drouin J (1999) Hindlimb patterning and mandible development require the Ptx1 gene. Development 126: 1805–1810.
[49]
Semenza GL, Wang GL, Kundu R (1995) DNA binding and transcriptional properties of wild-type and mutant forms of the homeodomain protein Msx2. Biochem Biophys Res Commun 209: 257–262. doi:10.1006/bbrc.1995.1497.
[50]
Green PD, Hjalt TA, Kirk DE, Sutherland LB, Thomas BL, et al. (2001) Antagonistic regulation of Dlx2 expression by PITX2 and Msx2: implications for tooth development. Gene Expr 9: 265–281.
[51]
Zhou YL, Snead ML (2000) Identification of CCAAT/enhancer-binding protein alpha as a transactivator of the mouse amelogenin gene. J Biol Chem 275: 12273–12280.
[52]
Liu W, Selever J, Lu M-F, Martin JF (2003) Genetic dissection of Pitx2 in craniofacial development uncovers new functions in branchial arch morphogenesis, late aspects of tooth morphogenesis and cell migration. Development 130: 6375–6385. doi:10.1242/dev.00849.
[53]
St Amand TR, Zhang Y, Semina EV, Zhao X, Hu Y, et al. (2000) Antagonistic signals between BMP4 and FGF8 define the expression of Pitx1 and Pitx2 in mouse tooth-forming anlage. Dev Biol 217: 323–332. doi:10.1006/dbio.1999.9547.
[54]
Poulin G, Lebel M, Chamberland M, Paradis FW, Drouin J (2000) Specific protein-protein interaction between basic helix-loop-helix transcription factors and homeoproteins of the Pitx family. Mol Cell Biol 20: 4826–4837.
[55]
Tremblay JJ, Goodyer CG, Drouin J (2000) Transcriptional properties of Ptx1 and Ptx2 isoforms. Neuroendocrinology 71: 277–286.
[56]
Amen M, Liu X, Vadlamudi U, Elizondo G, Diamond E, et al. (2007) PITX2 and beta-catenin interactions regulate Lef-1 isoform expression. Mol Cell Biol 27: 7560–7573. doi. pp. 10.1128/MCB.00315–07.
[57]
Cao H, Florez S, Amen M, Huynh T, Skobe Z, et al. (2010) Tbx1 regulates progenitor cell proliferation in the dental epithelium by modulating Pitx2 activation of p21. Dev Biol 347: 289–300. doi:10.1016/j.ydbio.2010.08.031.
[58]
Venugopalan SR, Li X, Amen MA, Florez S, Gutierrez D, et al. (2011) Hierarchical interactions of homeodomain and forkhead transcription factors in regulating odontogenic gene expression. J Biol Chem 286: 21372–21383. doi:10.1074/jbc.M111.252031.
[59]
Gage PJ, Suh H, Camper SA (1999) Dosage requirement of Pitx2 for development of multiple organs. Development 126: 4643–4651.
[60]
Szeto DP, Rodriguez-Esteban C, Ryan AK, O’Connell SM, Liu F, et al. (1999) Role of the Bicoid-related homeodomain factor Pitx1 in specifying hindlimb morphogenesis and pituitary development. Genes Dev 13: 484–494.
[61]
Myers RM, Stamatoyannopoulos J, Snyder M, Dunham I, Hardison RC, et al. (2011) A user’s guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol 9: e1001046. doi:10.1371/journal.pbio.1001046.
[62]
Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, et al. (2011) Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473: 43–49. doi:10.1038/nature09906.
[63]
Zhang X, Friedman A, Heaney S, Purcell P, Maas RL (2002) Meis homeoproteins directly regulate Pax6 during vertebrate lens morphogenesis. Genes Dev 16: 2097–2107. doi:10.1101/gad.1007602.
[64]
Nagy A (2003) Manipulating the mouse embryo: a laboratory manual. CSHL Press. 776 p.
[65]
Hunter S, Jones P, Mitchell A, Apweiler R, Attwood TK, et al. (2012) InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res 40: D306–312. doi:10.1093/nar/gkr948. InterPro Website. Available: http://www.ebi.ac.uk/interpro/(Accessed May 3 2012).