全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Clustering by Plasma Lipoprotein Profile Reveals Two Distinct Subgroups with Positive Lipid Response to Fenofibrate Therapy

DOI: 10.1371/journal.pone.0038072

Full-Text   Cite this paper   Add to My Lib

Abstract:

Fibrates lower triglycerides and raise HDL cholesterol in dyslipidemic patients, but show heterogeneous treatment response. We used k-means clustering to identify three representative NMR lipoprotein profiles for 775 subjects from the GOLDN population, and study the response to fenofibrate in corresponding subgroups. The subjects in each subgroup showed differences in conventional lipid characteristics and in presence/absence of cardiovascular risk factors at baseline; there were subgroups with a low, medium and high degree of dyslipidemia. Modeling analysis suggests that the difference between the subgroups with low and medium dyslipidemia is influenced mainly by hepatic uptake dysfunction, while the difference between subgroups with medium and high dyslipidemia is influenced mainly by extrahepatic lipolysis disfunction. The medium and high dyslipidemia subgroups showed a positive, yet distinct lipid response to fenofibrate treatment. When comparing our subgroups to known subgrouping methods, we identified an additional 33% of the population with favorable lipid response to fenofibrate compared to a standard baseline triglyceride cutoff method. Compared to a standard HDL cholesterol cutoff method, the addition was 18%. In conclusion, by using constructing subgroups based on representative lipoprotein profiles, we have identified two subgroups of subjects with positive lipid response to fenofibrate therapy and with different underlying disturbances in lipoprotein metabolism. The total subgroup with positive lipid response to fenofibrate is larger than subgroups identified with baseline triglyceride and HDL cholesterol cutoffs.

References

[1]  Wierzbicki AS (2010) Fibrates: No ACCORD on their use in the treatment of dyslipidaemia. Curr Opin Lipidol 21: 352.358
[2]  Elam M, Lovato LC, Ginsberg H (2011) Role of fibrates in cardiovascular disease prevention, the ACCORD-Lipid perspective. Curr Opin Lipidol 22: 55.61
[3]  Bruckert E, Labreuche J, Deplanque D, Touboul PJ, Amarenco P (2011) Fibrates effect on cardiovascular risk is greater in patients with high triglyceride levels or atherogenic dyslipidemia profile: A systematic review and meta-analysis. J Cardiovasc Pharmacol 57: 267.272
[4]  Committee of Principal Investigators (1978) A co-operative trial in the primary prevention of ischaemic heart disease using clofibrate. Report from the Committee of Principal Investigators. Br Heart J 40: 1069.1118
[5]  The Coronary Drug Project Research Group (1975) Clofibrate and Niacin in Coronary Heart Disease. JAMA 231: 360.381
[6]  Frick MH, Elo O, Haapa K, Heinonen OP, Heinsalmi P (1987) Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease. N Engl J Med 317: 1237.1245
[7]  Rubins HB, Robins SJ, Collins D, Fye CL, Anderson JW (1999) Gemfibrozil for the Secondary Prevention of Coronary Heart Disease in Men with Low Levels of High-Density Lipoprotein Cholesterol. N Engl J Med 341: 410.418
[8]  The BIP study group (2000) Secondary Prevention by Raising HDL Cholesterol and Reducing Triglycerides in Patients With Coronary Artery Disease : The Bezafibrate Infarction Prevention (BIP) Study. Circulation 102: 21.27
[9]  Meade T, Zuhrie R, Cook C, Cooper J (2002) Bezafibrate in men with lower extremity arterial disease: randomised controlled trial. BMJ 325: 1139.
[10]  DAIS investigators (2001) Effect of fenofibrate on progression of coronary-artery disease in type 2 diabetes: the Diabetes Atherosclerosis Intervention Study, a randomised study. Lancet 357: 905.910
[11]  The FIELD study investigators (2005) Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet 366: 1849.1861
[12]  Scott R, d’Emden M, Best J, Drury P, Ehnholm C (2007) Abstract 3691: Features Of Metabolic Syndrome Identify Individuals With Type 2 Diabetes Mellitus At High Risk For Cardiovascular Events And Greater Absolute Benefits Of Fenofibrate. Circulation 116: II.838
[13]  Manninen V, Tenkanen L, Koskinen P, Huttunen JK, Manttari M (1992) Joint effects of serum triglyceride and LDL cholesterol and HDL cholesterol concentrations on coronary heart disease risk in the Helsinki Heart Study. Implications for treatment. Circulation 85: 37.45
[14]  Robins SJ, Rubins HB, Faas FH, Schaefer EJ, Elam MB (2003) Insulin Resistance and Cardiovascular Events With Low HDL Cholesterol. Diabetes Care 26: 1513.1517
[15]  Ginsberg HN, Bonds DE, Lovato LC, Crouse JR, Elam MB (2007) Evolution of the lipid trial protocol of the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial. Am J Cardiol 99: 56i.67i
[16]  Otvos JD, Jeyarajah EJ, Bennett DW, Krauss RM (1992) Development of a proton nuclear magnetic resonance spectroscopic method for determining plasma lipoprotein concentrations and subspecies distributions from a single, rapid measurement. Clin Chem 38: 1632.1638
[17]  Usui S, Hara Y, Hosaki S, Okazaki M (2002) A new on-line dual enzymatic method for simultaneous quantification of cholesterol and triglycerides in lipoproteins by HPLC. J Lipid Res 43: 805.814
[18]  Austin MA, King MC, Vranizan KM, Krauss RM (1990) Atherogenic lipoprotein phenotype. A proposed genetic marker for coronary heart disease risk. Circulation 82: 495.506
[19]  Issemann I, Green S (1990) Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347: 645.650
[20]  Schoonjans K, Staels B, Auwerx J (1996) The peroxisome proliferator activated receptors (PPARs) and their effects on lipid metabolism and adipocyte differentiation. BBA 1302: 93.109
[21]  Staels B, Dallongeville J, Auwerx J, Schoonjans K, Leitersdorf E (1998) Mechanism of Action of Fibrates on Lipid and Lipoprotein Metabolism. Circulation 98: 2088.2093
[22]  Wierzbicki AS (2006) FIELDS of dreams, fields of tears: a perspective on the fibrate trials. Int J Clin Pract 60: 442.449
[23]  van Schalkwijk DB, de Graaf AA, van Ommen B, van Bochove K, Rensen PCN (2009) Improved cholesterol phenotype analysis by a model relating lipoprotein life cycle processes to particle size. J Lipid Res 50: 2398.2411
[24]  van Schalkwijk DB, van Bochove K, van Ommen B, Freidig AP, van Someren EP (2010) Developing computational model-based diagnostics to analyse clinical chemistry data. Brief Bioinform 11: 403.416
[25]  van Schalkwijk DB, van Ommen B, Freidig AP, van der Greef J, de Graaf AA (2011) Diagnostic Markers based on a Computational Model of Lipoprotein Metabolism. J Clin Bioinform 1: 29.
[26]  Lai CQ, Arnett DK, Corella D, Straka RJ, Tsai MY (2007) Fenofibrate Effect on Triglyceride and Postprandial Response of Apolipoprotein A5 Variants: The GOLDN Study. Arterioscler Thromb Vasc Biol 27: 1417.1425
[27]  Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28: 412.419
[28]  Otvos JD (2002) Measurement of lipoprotein subclass profiles by nuclear magnetic resonance spectroscopy. Clin Lab 48: 171.180
[29]  Otvos JD, Jeyarajah EJ, Cromwell WC (2002) Measurement issues related to lipoprotein heterogeneity. Am J Cardiol 90: 22i.29i
[30]  Packard CJ, Demant T, Stewart JP, Bedford D, Caslake MJ (2000) Apolipoprotein B metabolism and the distribution of VLDL and LDL subfractions. J Lipid Res 41: 305.318
[31]  Jeyarajah EJ, Cromwell WC, Otvos JD (2006) Lipoprotein particle analysis by nuclear magnetic resonance spectroscopy. Clin Lab Med 26: 847.870
[32]  Expert Panel on Detection EaToHBCiA (2001) Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 285: 2486.2497
[33]  Kleemann R, van EM, Verschuren L, van den Hoek AM, Koek M (2010) Time-resolved and tissue-specific systems analysis of the pathogenesis of insulin resistance. PLoS One 5: e8817.
[34]  El Harchaoui K, van der Steeg WA, Stroes ESG, Kuivenhoven JA, Otvos JD (2007) Value of Low-Density Lipoprotein Particle Number and Size as Predictors of Coronary Artery Disease in Apparently Healthy Men and Women: The EPIC-Norfolk Prospective Population Study. J Am Coll Cardiol 49: 547.553
[35]  Després JP, Lemieux I, Dagenais GR, Cantin B, Lamarche B (2000) HDL-cholesterol as a marker of coronary heart disease risk: the Québec cardiovascular study. Atherosclerosis 153: 263.272
[36]  Zeljkovic A, Spasojevic-Kalimanovska V, Vekic J, Jelic-Ivanovic Z, Topic A (2008) Does simultaneous determination of LDL and HDL particle size improve prediction of coronary artery disease risk? Clin Exp Med 8: 109.116
[37]  The ACCORD Study Group (2010) Effects of Combination Lipid Therapy in Type 2 Diabetes Mellitus. N Engl J Med 362: 1563.1574
[38]  Freedman DS, Otvos JD, Jeyarajah EJ, Shalaurova I, Cupples A (2004) Sex and age differences in lipoprotein subclasses measured by nuclear magnetic resonance spectroscopy: The Framingham study. Clin Chem 50: 1189.1200

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133