[1] | Mulligan HW, Potts WH, editors (1970) The African trypanosomiases. New York: Wiley-INTERSCIENCES.
|
[2] | Simarro PP, Diarra A, Ruiz Postigo JA, Franco JR, Jannin JG (2011) The human African trypanosomiasis control and surveillance programme of the World Health Organization 2000–2009: the way forward. PLoS Negl Trop Dis 5: e1007 doi:10.1371/journal.pntd.0001007.
|
[3] | Wei G, Bull H, Zhou X, Tabel H (2011) Intradermal infections of mice by low numbers of african trypanosomes are controlled by innate resistance but enhance susceptibility to reinfection. J Infect Dis 203: 418–429. doi: 10.1093/infdis/jiq051
|
[4] | Mansfield JM, Paulnock DM (2005) Regulation of innate and acquired immunity in African trypanosomiasis. Parasite Immunol 27: 361–371. doi: 10.1111/j.1365-3024.2005.00791.x
|
[5] | Roelants GE, Pinder M (1984) Immunobiology of African trypanosomiasis. Contemp Top Immunobiol 12: 225–274. doi: 10.1007/978-1-4684-4571-8_7
|
[6] | Sacks DL, Askonas BA (1980) Trypanosome-induced suppression of anti-parasite responses during experimental African trypanosomiasis. Eur J Immunol 10: 971–974. doi: 10.1002/eji.1830101216
|
[7] | Barry JD, McCulloch R (2001) Antigenic variation in trypanosomes: enhanced phenotypic variation in a eukaryotic parasite. Adv Parasitol 49: 1–70. doi: 10.1007/978-1-4684-4571-8_7
|
[8] | Ferguson MA (1999) The structure, biosynthesis and functions of glycosylphosphatidylinositol anchors, and the contributions of trypanosome research. J Cell Sci 112: 2799–2809.
|
[9] | Schofield L, McConville MJ, Hansen D, Campbell AS, Fraser-Reid B, et al. (1999) CD1d-restricted immunoglobulin G formation to GPI-anchored antigens mediated by NKT cells. Science 283: 225–229. doi: 10.1126/science.283.5399.225
|
[10] | Brun R, Blum J, Chappuis F, Burri C (2010) Human African trypanosomiasis. Lancet 375: 148–159. doi: 10.1016/S0140-6736(09)60829-1
|
[11] | Marcoux V, Wei G, Tabel H, Bull HJ (2010) Characterization of major surface protease homologues of Trypanosoma congolense. J Biomed Biotechnol 2010: 418157. doi: 10.1155/2010/418157
|
[12] | Askonas BA (1985) Macrophages as mediators of immunosuppression in murine African trypanosomiasis. Curr Top Microbiol Immunol 117: 119–127.
|
[13] | Beschin A, Brys L, Magez S, Radwanska M, De Baetselier P (1998) Trypanosoma brucei infection elicits nitric oxide-dependent and nitric oxide-independent suppressive mechanisms. J Leukoc Biol 63: 429–439.
|
[14] | Sternberg J, McGuigan F (1992) Nitric oxide mediates suppression of T cell responses in murine Trypanosoma brucei infection. Eur J Immunol 22: 2741–2744. doi: 10.1002/eji.1830221041
|
[15] | Wei G, Tabel H (2008) Regulatory T cells prevent control of experimental African trypanosomiasis. J Immunol 180: 2514–2521.
|
[16] | Fairbairn H, Burtt E (1946) The infectivity to man of a strain of Trypanosoma rhodesiense transmitted cyclically by Glossina morsitans through sheep and antelope: Evidence that man requires a minimum infective dose of metacyclic trypanosomes. Annals of Tropical and Medical Parasitology 40: 270–313.
|
[17] | Godfrey DI, Kronenberg M (2004) Going both ways: immune regulation via CD1d-dependent NKT cells. J Clin Invest 114: 1379–1388. doi: 10.1172/JCI23594
|
[18] | Berzofsky JA, Terabe M (2008) A novel immunoregulatory axis of NKT cell subsets regulating tumor immunity. Cancer Immunol Immunother 57: 1679–1683. doi: 10.1007/s00262-008-0495-4
|
[19] | Lin YT, Wang CT, Chao PS, Lee JH, Wang LC, et al. (2011) Skin-homing CD4+ Foxp3+ T cells exert Th2-like function after staphylococcal superantigen stimulation in atopic dermatitis patients. Clin Exp Allergy 41: 516–525. doi: 10.1111/j.1365-2222.2010.03681.x
|
[20] | Mackay CR (1993) Homing of naive, memory and effector lymphocytes. Curr Opin Immunol 5: 423–427. doi: 10.1016/0952-7915(93)90063-X
|
[21] | Magez S, Caljon G, Tran T, Stijlemans B, Radwanska M (2010) Current status of vaccination against African trypanosomiasis. Parasitology 137: 2017–2027. doi: 10.1017/S0031182010000223
|
[22] | Hertz CJ, Filutowicz H, Mansfield JM (1998) Resistance to the African trypanosomes is IFN-gamma dependent. J Immunol 161: 6775–6783.
|
[23] | Schleifer KW, Mansfield JM (1993) Suppressor macrophages in African trypanosomiasis inhibit T cell proliferative responses by nitric oxide and prostaglandins. J Immunol 151: 5492–5503.
|
[24] | Sica A, Bronte V (2007) Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest 117: 1155–1166. doi: 10.1172/JCI31422
|
[25] | Bronte V, Zanovello P (2005) Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol 5: 641–654. doi: 10.1038/nri1668
|
[26] | Duleu S, Vincendeau P, Courtois P, Semballa S, Lagroye I, et al. (2004) Mouse strain susceptibility to trypanosome infection: an arginase-dependent effect. J Immunol 172: 6298–6303.
|
[27] | Gobert AP, Daulouede S, Lepoivre M, Boucher JL, Bouteille B, et al. (2000) L-Arginine availability modulates local nitric oxide production and parasite killing in experimental trypanosomiasis. Infect Immun 68: 4653–4657. doi: 10.1128/IAI.68.8.4653-4657.2000
|
[28] | Pepper M, Jenkins MK (2011) Origins of CD4(+) effector and central memory T cells. Nat Immunol 12: 467–471. doi: 10.1038/ni.2038
|
[29] | Caljon G, Van Den Abbeele J, Sternberg JM, Coosemans M, De Baetselier P, et al. (2006) Tsetse fly saliva biases the immune response to Th2 and induces anti-vector antibodies that are a useful tool for exposure assessment. Int J Parasitol 36: 1025–1035. doi: 10.1016/j.ijpara.2006.05.002
|
[30] | Norrby E (2007) Yellow fever and Max Theiler: the only Nobel Prize for a virus vaccine. J Exp Med 204: 2779–2784. doi: 10.1084/jem.20072290
|
[31] | Tabel H, Wei G, Shi M (2008) T cells and immunopathogenesis of experimental African trypanosomiasis. Immunol Rev 225: 128–139. doi: 10.1111/j.1600-065X.2008.00675.x
|
[32] | Niedbala W, Wei XQ, Campbell C, Thomson D, Komai-Koma M, et al. (2002) Nitric oxide preferentially induces type 1 T cell differentiation by selectively up-regulating IL-12 receptor beta 2 expression via cGMP. Proc Natl Acad Sci U S A 99: 16186–16191. doi: 10.1073/pnas.252464599
|
[33] | Shakibaei M, Frevert U (1992) Cell surface interactions between Trypanosoma congolense and macrophages during phagocytosis in vitro. J Protozool 39: 224–235. doi: 10.1111/j.1550-7408.1992.tb01306.x
|
[34] | Zea AH, Rodriguez PC, Culotta KS, Hernandez CP, DeSalvo J, et al. (2004) L-Arginine modulates CD3zeta expression and T cell function in activated human T lymphocytes. Cell Immunol 232: 21–31. doi: 10.1016/j.cellimm.2005.01.004
|