全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Epidemiology of Sleeping Sickness in Boffa (Guinea): Where Are the Trypanosomes?

DOI: 10.1371/journal.pntd.0001949

Full-Text   Cite this paper   Add to My Lib

Abstract:

Human African Trypanosomiasis (HAT) in West Africa is a lethal, neglected disease caused by Trypanosoma brucei gambiense transmitted by the tsetse Glossina palpalis gambiensis. Although the littoral part of Guinea with its typical mangrove habitat is the most prevalent area in West Africa, very few data are available on the epidemiology of the disease in such biotopes. As part of a HAT elimination project in Guinea, we carried a cross-sectional study of the distribution and abundance of people, livestock, tsetse and trypanosomes in the focus of Boffa. An exhaustive census of the human population was done, together with spatial mapping of the area. Entomological data were collected, a human medical survey was organized together with a survey in domestic animals. In total, 45 HAT cases were detected out of 14445 people who attended the survey, these latter representing 50.9% of the total population. Potential additional carriers of T. b. gambiense were also identified by the trypanolysis test (14 human subjects and two domestic animals). No trypanosome pathogenic to animals were found, neither in the 874 tsetse dissected nor in the 300 domestic animals sampled. High densities of tsetse were found in places frequented by humans, such as pirogue jetties, narrow mangrove channels and watering points. The prevalence of T. b. gambiense in humans, combined to low attendance of the population at risk to medical surveys, and to an additional proportion of human and animal carriers of T. b. gambiense who are not treated, highlights the limits of strategies targeting HAT patients only. In order to stop T. b. gambiense transmission, vector control should be added to the current strategy of case detection and treatment. Such an integrated strategy will combine medical surveillance to find and treat cases, and vector control activities to protect people from the infective bites of tsetse.

References

[1]  Simarro PP, Diarra A, Ruiz Postigo JA, Franco JR, Jannin JG (2011) The human African trypanosomiasis control and surveillance programme of the World Health Organization 2000–2009: the way forward. PLoS Negl Trop Dis 5: e1007. doi: 10.1371/journal.pntd.0001007
[2]  Camara M, Kaba D, Kagbadouno M, Sanon R, Ouendeno F, Solano P (2005) Human African trypanosomiasis in the mangrove forest in Guinea: epidemiological and clinical features in two adjacent outbreak areas. Méd trop 65: 155–161.
[3]  Jamonneau V, Bucheton B, Kaboré J, Ilboudo H, Camara O, et al. (2010) Revisiting the immune trypanolysis test to optimise epidemiological surveillance and control of sleeping sickness in West Africa. PLoS Negl Trop Dis 4(12): e917 doi:10.1371/journal.pntd.0000917.
[4]  Ilboudo H, Jamonneau V, Camara M, Camara O, Dama E, et al. (2011) Diversity of response to Trypanosoma brucei gambiense infections in the Forecariah mangrove focus (Guinea): perspectives for a better control of sleeping sickness. Microbes Infect 13: 943–952. doi: 10.1016/j.micinf.2011.05.007
[5]  Kohagne-Tongué L, Mpengue M'eyi P, Mimpfoundi R, Louis FJ (2010) Glossina feeding habits and diversity of species of trypanosomes in an active focus of human African trypanosomiasis in Gabon. Bull Soc Path Exot 103: 264–271. doi: 10.1007/s13149-010-0062-z
[6]  Simon F, Mura M, Pagès F, Morand G, Truc P, et al. (2012) Urban transmission of Human African Trypanosomiasis, Gabon. Emerg Infect Dis 18: 165–7 doi: 10.3201/eid1801.111384.
[7]  Camara M, Caro-Riano H, Ravel S, Dujardin JP, Hervouet JP, et al. (2006) Genetic and morphometric evidence for population isolation of Glossina palpalis gambiensis from Loos islands, Guinea. J Med Entomol 43: 853–860. doi: 10.1603/0022-2585(2006)43[853:GAMEFP]2.0.CO;2
[8]  Laveissière C, Camara M, Rayaisse JB, Salou E, Kagbadouno M, Solano P (2011) Trapping tsetse on water. Parasite 18: 141–144. doi: 10.1051/parasite/2011182141
[9]  Solano P, Ravel S, de Mee?s T (2010) How can tsetse population genetics contribute to African Trypanosomosis control? Trends in Parasitol 26: 255–263 doi: 10.1016/j.pt.2010.02.006.
[10]  Solano P, Ravel S, Bouyer J, Camara M, Kagbadouno MS, et al. (2009) Population Structures of Insular and Continental Glossina palpalis gambiensis in Littoral Guinea. PLoS Negl Trop Dis 3(3): e392 doi:10.1371/journal.pntd.0000392.
[11]  Coombs JA, Letcher BH, Nislow KH (2008) CREATE: a software to create input files from diploid genotypic data for 52 genetic software programs. Mol Ecol Res 8: 578–580. doi: 10.1111/j.1471-8286.2007.02036.x
[12]  Wright S (1965) The interpretation of population structure by F-statistics with special regard to system of mating. Evolution 19: 395–420. doi: 10.1111/j.1471-8286.2007.02036.x
[13]  Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of populations structure. Evolution 38: 1358–1370. doi: 10.1111/j.1471-8286.2007.02036.x
[14]  Goudet J (2003) Fstat (ver. 2.9.4), a program to estimate and test population genetics parameters. Available from http://www.unil.ch/izea/softwares/fstat.?html
[15]  Goudet J (1995) FSTAT (v. 1.2): a computer program to calculate F-statistics. J Hered 86: 485–486. doi: 10.1111/j.1471-8286.2007.02036.x
[16]  Goudet J, Raymond M, De Mee?s T, Rousset F (1996) Testing differentiation in diploid populations. Genetics 144: 1933–1940.
[17]  De Mee?s T, Guégan JF, Teriokhin AT (2009) MultiTest V.1.2, a program to binomially combine independent tests and performance comparison with other related methods on proportional data. BMC Bioinformatics 10: 443. doi: 10.1186/1471-2105-10-443
[18]  Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4: 535–538.
[19]  Brookfield JFY (1996) A simple new method for estimating null allele frequency from heterozygote deficiency. Mol Ecol 5: 453–455.
[20]  R-Development-core-team (2011) R: A Language and Environment for Statistical Computing. In, R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org, ISBN 3-900051-07-0.
[21]  De Mee?s T, McCoy KD, Prugnolle F, Chevillon C, Durand P, et al. (2007) Population genetics and molecular epidemiology or how to “débusquer la bête”. Inf Genet Evol 7: 308–332. doi: 10.1016/j.meegid.2006.07.003
[22]  Benjamini Y, Hochberg Y (2000) On the adaptive control of the false discovery fate in multiple testing with independent statistics. J Educ Behav Stat 25: 60–83. doi: 10.1016/j.meegid.2006.07.003
[23]  Waples RS, Do C (2008) LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Res 8: 753–756. doi: 10.1016/j.meegid.2006.07.003
[24]  Magnus E, Vervoort T, Van Meirvenne N (1978) A card-agglutination test with stained trypanosomes (C.A.T.T.) for the serological diagnosis of T. b. gambiense trypanosomiasis. Ann Soc Belg Med Trop 58: 169–176. doi: 10.1016/j.meegid.2006.07.003
[25]  Camara M, Camara O, Ilboudo H, Sakande H, Kaboré J, et al. (2010) Sleeping sickness diagnosis: use of buffy coats improves the sensitivity of the mini anion exchange centrifugation test. Trop Med Intl Health 15: 796–799. doi: 10.1016/j.meegid.2006.07.003
[26]  Murray M, Murray PK, McIntyre WIM (1977) An improved parasitological technique for the diagnosis of African Trypanosomiasis. Trans R soc Trop Med Hyg 71: 325–326. doi: 10.1016/0035-9203(77)90110-9
[27]  Solano P, Michel JF, Lefran?ois T, de La Rocque S, Sidibé I, et al. (1999) Polymerase Chain Reaction as a diagnosis tool for detecting trypanosomes in naturally infected cattle in Burkina Faso. Vet Parasitol 86: 95–103. doi: 10.1016/S0304-4017(99)00137-5
[28]  Masiga DK, Smyth AJ, Hayes P, Bromidge TJ, Gibson WC (1992) Sensitive detection of trypanosomes in tsetse flies by DNA amplification. Int J Parasitol 22: 909–918. doi: 10.1016/0020-7519(92)90047-O
[29]  Moser DR, Cook GA, Ochs DE, Bailey CP, McKane MR, Donelson JE (1989) Detection of Trypanosoma congolense and T. brucei subspecies by DNA amplification using the Polymerase Chain Reaction. Parasitology 99: 57–66. doi: 10.1017/S0031182000061023
[30]  Masiga DK, Mc Namara JJ, Gibson WC (1996) A repetitive DNA sequence specific for Trypanosoma (Nannomonas) godfreyi. Vet Parasitol 62: 27–33. doi: 10.1016/0304-4017(95)00847-0
[31]  Rossi G, Bazzo D, Lauffer M (2002) La Guinée Maritime aujourd'hui. Cah d'Outre-Mer 217: 23. doi: 10.4000/com.1033
[32]  Courtin F, Jamonneau V, Camara M, Camara O, Coulibaly B, et al. (2010) A geographical approach to identify sleeping sickness risk factors in a mangrove ecosystem. Trop Med Int Health 15: 881–889. doi: 10.1111/j.1365-3156.2010.02559.x
[33]  Bouyer J, Guerrini L, Cesar J, de la Rocque S, Cuisance D (2005) A phyto-sociological analysis of the distribution of riverine tsetse flies in Burkina Faso. Med Vet Entomol 19: 372–378. doi: 10.1111/j.1365-2915.2005.00584.x
[34]  Rayaisse JB, Courtin F, Akoudjim M, Cesar J, Solano P (2009) Influence de l'anthropisation sur la végétation et l'abondance des tsé-tsé au sud du Burkina-Faso. Parasite 16: 21–28. doi: 10.1051/parasite/2009161021
[35]  Jamonneau V, Ilboudo H, Kaboré J, Kaba D, Koffi M, et al. (2012) Untreated human infections by T. b. gambiense are not 100% fatal. PLoS Negl Trop Dis 6(6): e1691 doi:10.1371/journal.pntd.0001691.
[36]  Bucheton B, MacLeod A, Jamonneau V (2011) Human host determinants influencing the outcome of Trypanosoma brucei gambiense infections. Parasite Immunol 33: 438–447. doi: 10.1111/j.1365-3024.2011.01287.x
[37]  Lindner AK, Priotto G (2010) The Unknown Risk of Vertical Transmission in Sleeping Sickness—A Literature Review. PLoS Negl Trop Dis 4(12): e783 doi:10.1371/journal.pntd.0000783.
[38]  Kagbadouno M, Camara M, Bouyer J, Hervouet JP, Courtin F, et al. (2009) Tsetse elimination: its interest and feasibility in the historical sleeping sickness focus of Loos islands, Guinea. Parasite 16: 29–36. doi: 10.1051/parasite/2009161029
[39]  Jamonneau V, Ravel S, Koffi M, Zeze D, Kaba D, et al. (2004) Mixed trypanosome infections in tsetse and pigs and their epidemiological significance in a sleeping sickness focus in C?te d'Ivoire. Parasitology 129: 693–702. doi: 10.1017/S0031182004005876
[40]  Auti H, Picozzi K, Malele I, Torr SJ, Cleaveland S, Welburn SC (2012) Using molecular data for epidemiological inference: assessing the prevalence of Trypanosoma brucei rhodesiense in tsetse in Serengeti, Tanzania. PLoS Negl Trop Dis 6(1): e1501. doi: 10.1371/journal.pntd.0001501
[41]  Solano P, Guégan JF, Reifenberg JM, Thomas F (2001) Trying to identify, predict and explain the presence of african trypanosomes in tsetse flies. J Parasitol 87: 1058–1063. doi: 10.1645/0022-3395(2001)087[1058:TTPAET]2.0.CO;2
[42]  Guerrini L, Bouyer J (2007) Mapping animal african trypanosomosis risk: the landscape approach. Vet Ital 43: 643–54.
[43]  Van den Abbele J, Caljon G, de Ridder K, de Baetselier P, Coosemans M (2010) Trypanosoma brucei modifies the tsetse salivary composition, altering the fly feeding behavior that favors parasite transmission. PLoS Pathog 3 6(6): e1000926.
[44]  Welburn SC, Maudlin I (2012) Priorities for the elimination of sleeping sickness. Adv Parasitol 79: 299–337. doi: 10.1016/B978-0-12-398457-9.00004-4
[45]  Rayaisse JB, Esterhuizen J, Tirados I, Kaba D, Salou E, et al. (2011) Towards an Optimal Design of Target for Tsetse Control: Comparisons of Novel Targets for the Control of Palpalis group Tsetse in West Africa. PLoS Negl Trop Dis 5(9): e1332. doi: 10.1371/journal.pntd.0001332

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133