[1] | Blanco-Melo D, Venkatesh S, Bieniasz PD (2012) Intrinsic Cellular Defenses against Human Immunodeficiency Viruses. Immunity 37: 399–411. doi: 10.1016/j.immuni.2012.08.013
|
[2] | Hatziioannou T, Bieniasz PD (2011) Antiretroviral restriction factors. Curr Opin Virol 1: 526–532. doi: 10.1016/j.coviro.2011.10.007
|
[3] | Malim MH, Bieniasz PD (2012) HIV Restriction Factors and Mechanisms of Evasion. Cold Spring Harb Perspect Med 2: a006940. doi: 10.1101/cshperspect.a006940
|
[4] | Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, et al. (2004) The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature 427: 848–853. doi: 10.1038/nature02343
|
[5] | Reymond A, Meroni G, Fantozzi A, Merla G, Cairo S, et al. (2001) The tripartite motif family identifies cell compartments. EMBO J 20: 2140–2151. doi: 10.1093/emboj/20.9.2140
|
[6] | Nisole S, Stoye JP, Saib A (2005) TRIM family proteins: retroviral restriction and antiviral defence. Nat Rev Microbiol 3: 799–808. doi: 10.1038/nrmicro1248
|
[7] | Huthoff H, Towers GJ (2008) Restriction of retroviral replication by APOBEC3G/F and TRIM5alpha. Trends Microbiol 16: 612–619. doi: 10.1016/j.tim.2008.08.013
|
[8] | Sastri J, Campbell EM (2011) Recent insights into the mechanism and consequences of TRIM5alpha retroviral restriction. AIDS Res Hum Retroviruses 27: 231–238. doi: 10.1089/aid.2010.0367
|
[9] | Nakayama EE, Miyoshi H, Nagai Y, Shioda T (2005) A specific region of 37 amino acid residues in the SPRY (B30.2) domain of African green monkey TRIM5alpha determines species-specific restriction of simian immunodeficiency virus SIVmac infection. J Virol 79: 8870–8877. doi: 10.1128/jvi.79.14.8870-8877.2005
|
[10] | Perez-Caballero D, Hatziioannou T, Yang A, Cowan S, Bieniasz PD (2005) Human tripartite motif 5alpha domains responsible for retrovirus restriction activity and specificity. J Virol 79: 8969–8978. doi: 10.1128/jvi.79.14.8969-8978.2005
|
[11] | Sawyer SL, Wu LI, Emerman M, Malik HS (2005) Positive selection of primate TRIM5alpha identifies a critical species-specific retroviral restriction domain. Proc Natl Acad Sci U S A 102: 2832–2837. doi: 10.1073/pnas.0409853102
|
[12] | Stremlau M, Perron M, Welikala S, Sodroski J (2005) Species-specific variation in the B30.2(SPRY) domain of TRIM5alpha determines the potency of human immunodeficiency virus restriction. J Virol 79: 3139–3145. doi: 10.1128/jvi.79.5.3139-3145.2005
|
[13] | Yap MW, Nisole S, Stoye JP (2005) A single amino acid change in the SPRY domain of human Trim5alpha leads to HIV-1 restriction. Curr Biol 15: 73–78. doi: 10.1016/j.cub.2004.12.042
|
[14] | Perez-Caballero D, Hatziioannou T, Zhang F, Cowan S, Bieniasz PD (2005) Restriction of human immunodeficiency virus type 1 by TRIM-CypA occurs with rapid kinetics and independently of cytoplasmic bodies, ubiquitin, and proteasome activity. J Virol 79: 15567–15572. doi: 10.1128/jvi.79.24.15567-15572.2005
|
[15] | Cowan S, Hatziioannou T, Cunningham T, Muesing MA, Gottlinger HG, et al. (2002) Cellular inhibitors with Fv1-like activity restrict human and simian immunodeficiency virus tropism. Proc Natl Acad Sci U S A 99: 11914–11919. doi: 10.1073/pnas.162299499
|
[16] | Munk C, Brandt SM, Lucero G, Landau NR (2002) A dominant block to HIV-1 replication at reverse transcription in simian cells. Proc Natl Acad Sci U S A 99: 13843–13848. doi: 10.1073/pnas.212400099
|
[17] | Owens CM, Yang PC, Gottlinger H, Sodroski J (2003) Human and simian immunodeficiency virus capsid proteins are major viral determinants of early, postentry replication blocks in simian cells. J Virol 77: 726–731. doi: 10.1128/jvi.77.1.726-731.2003
|
[18] | Besnier C, Takeuchi Y, Towers G (2002) Restriction of lentivirus in monkeys. Proc Natl Acad Sci U S A 99: 11920–11925. doi: 10.1073/pnas.172384599
|
[19] | Dodding MP, Bock M, Yap MW, Stoye JP (2005) Capsid processing requirements for abrogation of Fv1 and Ref1 restriction. J Virol 79: 10571–10577. doi: 10.1128/jvi.79.16.10571-10577.2005
|
[20] | Javanbakht H, Diaz-Griffero F, Stremlau M, Si Z, Sodroski J (2005) The contribution of RING and B-box 2 domains to retroviral restriction mediated by monkey TRIM5alpha. J Biol Chem 280: 26933–26940. doi: 10.1074/jbc.m502145200
|
[21] | Lienlaf M, Hayashi F, Di Nunzio F, Tochio N, Kigawa T, et al. (2011) Contribution of E3-ubiquitin ligase activity to HIV-1 restriction by TRIM5alpha(rh): structure of the RING domain of TRIM5alpha. J Virol 85: 8725–8737. doi: 10.1128/jvi.00497-11
|
[22] | Hatziioannou T, Perez-Caballero D, Yang A, Cowan S, Bieniasz PD (2004) Retrovirus resistance factors Ref1 and Lv1 are species-specific variants of TRIM5alpha. Proc Natl Acad Sci U S A 101: 10774–10779. doi: 10.1073/pnas.0402361101
|
[23] | Keckesova Z, Ylinen LM, Towers GJ (2004) The human and African green monkey TRIM5alpha genes encode Ref1 and Lv1 retroviral restriction factor activities. Proc Natl Acad Sci U S A 101: 10780–10785. doi: 10.1073/pnas.0402474101
|
[24] | Yap MW, Nisole S, Lynch C, Stoye JP (2004) Trim5alpha protein restricts both HIV-1 and murine leukemia virus. Proc Natl Acad Sci U S A 101: 10786–10791. doi: 10.1073/pnas.0402876101
|
[25] | Perron MJ, Stremlau M, Song B, Ulm W, Mulligan RC, et al. (2004) TRIM5alpha mediates the postentry block to N-tropic murine leukemia viruses in human cells. Proc Natl Acad Sci U S A 101: 11827–11832. doi: 10.1073/pnas.0403364101
|
[26] | Nisole S, Lynch C, Stoye JP, Yap MW (2004) A Trim5-cyclophilin A fusion protein found in owl monkey kidney cells can restrict HIV-1. Proc Natl Acad Sci U S A 101: 13324–13328. doi: 10.1073/pnas.0404640101
|
[27] | Sayah DM, Sokolskaja E, Berthoux L, Luban J (2004) Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1. Nature 430: 569–573. doi: 10.1038/nature02777
|
[28] | Wilson SJ, Webb BL, Ylinen LM, Verschoor E, Heeney JL, et al. (2008) Independent evolution of an antiviral TRIMCyp in rhesus macaques. Proc Natl Acad Sci U S A 105: 3557–3562. doi: 10.1073/pnas.0709003105
|
[29] | Virgen CA, Kratovac Z, Bieniasz PD, Hatziioannou T (2008) Independent genesis of chimeric TRIM5-cyclophilin proteins in two primate species. Proc Natl Acad Sci U S A 105: 3563–3568. doi: 10.1073/pnas.0709258105
|
[30] | Grutter MG, Luban J (2012) TRIM5 structure, HIV-1 capsid recognition, and innate immune signaling. Curr Opin Virol 2: 142–150. doi: 10.1016/j.coviro.2012.02.003
|
[31] | Perron MJ, Stremlau M, Lee M, Javanbakht H, Song B, et al. (2007) The human TRIM5alpha restriction factor mediates accelerated uncoating of the N-tropic murine leukemia virus capsid. J Virol 81: 2138–2148. doi: 10.1128/jvi.02318-06
|
[32] | Stremlau M, Perron M, Lee M, Li Y, Song B, et al. (2006) Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5alpha restriction factor. Proc Natl Acad Sci U S A 103: 5514–5519. doi: 10.1073/pnas.0509996103
|
[33] | Kar AK, Diaz-Griffero F, Li Y, Li X, Sodroski J (2008) Biochemical and biophysical characterization of a chimeric TRIM21-TRIM5alpha protein. J Virol 82: 11669–11681. doi: 10.1128/jvi.01559-08
|
[34] | Langelier CR, Sandrin V, Eckert DM, Christensen DE, Chandrasekaran V, et al. (2008) Biochemical characterization of a recombinant TRIM5alpha protein that restricts human immunodeficiency virus type 1 replication. J Virol 82: 11682–11694. doi: 10.1128/jvi.01562-08
|
[35] | Anderson JL, Campbell EM, Wu X, Vandegraaff N, Engelman A, et al. (2006) Proteasome inhibition reveals that a functional preintegration complex intermediate can be generated during restriction by diverse TRIM5 proteins. J Virol 80: 9754–9760. doi: 10.1128/jvi.01052-06
|
[36] | Chatterji U, Bobardt MD, Gaskill P, Sheeter D, Fox H, et al. (2006) Trim5alpha accelerates degradation of cytosolic capsid associated with productive HIV-1 entry. J Biol Chem 281: 37025–37033. doi: 10.1074/jbc.m606066200
|
[37] | Wu X, Anderson JL, Campbell EM, Joseph AM, Hope TJ (2006) Proteasome inhibitors uncouple rhesus TRIM5alpha restriction of HIV-1 reverse transcription and infection. Proc Natl Acad Sci U S A 103: 7465–7470. doi: 10.1073/pnas.0510483103
|
[38] | Campbell EM, Perez O, Anderson JL, Hope TJ (2008) Visualization of a proteasome-independent intermediate during restriction of HIV-1 by rhesus TRIM5alpha. J Cell Biol 180: 549–561. doi: 10.1083/jcb.200706154
|
[39] | Roa A, Hayashi F, Yang Y, Lienlaf M, Zhou J, et al. (2012) RING domain mutations uncouple TRIM5alpha restriction of HIV-1 from inhibition of reverse transcription and acceleration of uncoating. J Virol 86: 1717–1727. doi: 10.1128/jvi.05811-11
|
[40] | Diaz-Griffero F, Kar A, Lee M, Stremlau M, Poeschla E, et al. (2007) Comparative requirements for the restriction of retrovirus infection by TRIM5alpha and TRIMCyp. Virology 369: 400–410. doi: 10.1016/j.virol.2007.08.032
|
[41] | Diaz-Griffero F, Perron M, McGee-Estrada K, Hanna R, Maillard PV, et al. (2008) A human TRIM5alpha B30.2/SPRY domain mutant gains the ability to restrict and prematurely uncoat B-tropic murine leukemia virus. Virology 378: 233–242. doi: 10.1016/j.virol.2008.05.008
|
[42] | Pertel T, Hausmann S, Morger D, Zuger S, Guerra J, et al. (2011) TRIM5 is an innate immune sensor for the retrovirus capsid lattice. Nature 472: 361–365. doi: 10.1038/nature09976
|
[43] | Javanbakht H, Diaz-Griffero F, Yuan W, Yeung DF, Li X, et al. (2007) The ability of multimerized cyclophilin A to restrict retrovirus infection. Virology 367: 19–29. doi: 10.1016/j.virol.2007.04.034
|
[44] | Berube J, Bouchard A, Berthoux L (2007) Both TRIM5alpha and TRIMCyp have only weak antiviral activity in canine D17 cells. Retrovirology 4: 68. doi: 10.1186/1742-4690-4-68
|
[45] | Ohkura S, Goldstone DC, Yap MW, Holden-Dye K, Taylor IA, et al. (2011) Novel escape mutants suggest an extensive TRIM5alpha binding site spanning the entire outer surface of the murine leukemia virus capsid protein. PLoS Pathog 7: e1002011. doi: 10.1371/journal.ppat.1002011
|
[46] | Yang Y, Fricke T, Diaz-Griffero F (2012) Inhibition of Reverse Transcriptase Activity Increases Stability of the HIV-1 Core. J Virol 87: 683–7. doi: 10.1128/jvi.01228-12
|
[47] | Li Y, Kar AK, Sodroski J (2009) Target cell type-dependent modulation of human immunodeficiency virus type 1 capsid disassembly by cyclophilin A. J Virol 83: 10951–10962. doi: 10.1128/jvi.00682-09
|
[48] | Shi J, Zhou J, Shah VB, Aiken C, Whitby K (2010) Small-molecule inhibition of human immunodeficiency virus type 1 infection by virus capsid destabilization. J Virol 85: 542–549. doi: 10.1128/jvi.01406-10
|
[49] | Marechal V, Clavel F, Heard JM, Schwartz O (1998) Cytosolic Gag p24 as an index of productive entry of human immunodeficiency virus type 1. J Virol 72: 2208–2212.
|
[50] | Kratovac Z, Virgen CA, Bibollet-Ruche F, Hahn BH, Bieniasz PD, et al. (2008) Primate lentivirus capsid sensitivity to TRIM5 proteins. J Virol 82: 6772–6777. doi: 10.1128/jvi.00410-08
|
[51] | Hulme AE, Perez O, Hope TJ (2011) Complementary assays reveal a relationship between HIV-1 uncoating and reverse transcription. Proc Natl Acad Sci U S A 108: 9975–9980. doi: 10.1073/pnas.1014522108
|
[52] | Ganser-Pornillos BK, Chandrasekaran V, Pornillos O, Sodroski JG, Sundquist WI, et al. (2011) Hexagonal assembly of a restricting TRIM5alpha protein. Proc Natl Acad Sci U S A 108: 534–539. doi: 10.1073/pnas.1013426108
|
[53] | Mulder LC, Muesing MA (2000) Degradation of HIV-1 integrase by the N-end rule pathway. J Biol Chem 275: 29749–29753. doi: 10.1074/jbc.m004670200
|
[54] | Asher G, Lotem J, Sachs L, Kahana C, Shaul Y (2002) Mdm-2 and ubiquitin-independent p53 proteasomal degradation regulated by NQO1. Proc Natl Acad Sci U S A 99: 13125–13130. doi: 10.1073/pnas.202480499
|
[55] | Krappmann D, Wulczyn FG, Scheidereit C (1996) Different mechanisms control signal-induced degradation and basal turnover of the NF-kappaB inhibitor IkappaB alpha in vivo. EMBO J 15: 6716–6726.
|
[56] | Michalek MT, Grant EP, Rock KL (1996) Chemical denaturation and modification of ovalbumin alters its dependence on ubiquitin conjugation for class I antigen presentation. J Immunol 157: 617–624.
|
[57] | Miller CL, Pintel DJ (2001) The NS2 protein generated by the parvovirus minute virus of mice is degraded by the proteasome in a manner independent of ubiquitin chain elongation or activation. Virology 285: 346–355. doi: 10.1006/viro.2001.0966
|
[58] | Sheaff RJ, Singer JD, Swanger J, Smitherman M, Roberts JM, et al. (2000) Proteasomal turnover of p21Cip1 does not require p21Cip1 ubiquitination. Mol Cell 5: 403–410. doi: 10.1016/s1097-2765(00)80435-9
|
[59] | Kalejta RF, Shenk T (2003) Proteasome-dependent, ubiquitin-independent degradation of the Rb family of tumor suppressors by the human cytomegalovirus pp71 protein. Proc Natl Acad Sci U S A 100: 3263–3268. doi: 10.1073/pnas.0538058100
|
[60] | Afonina E, Neumann M, Pavlakis GN (1997) Preferential binding of poly(A)-binding protein 1 to an inhibitory RNA element in the human immunodeficiency virus type 1 gag mRNA. J Biol Chem 272: 2307–2311. doi: 10.1074/jbc.272.4.2307
|
[61] | Maldarelli F, Martin MA, Strebel K (1991) Identification of posttranscriptionally active inhibitory sequences in human immunodeficiency virus type 1 RNA: novel level of gene regulation. J Virol 65: 5732–5743.
|
[62] | Nasioulas G, Zolotukhin AS, Tabernero C, Solomin L, Cunningham CP, et al. (1994) Elements distinct from human immunodeficiency virus type 1 splice sites are responsible for the Rev dependence of env mRNA. J Virol 68: 2986–2993.
|
[63] | Olsen HS, Cochrane AW, Rosen C (1992) Interaction of cellular factors with intragenic cis-acting repressive sequences within the HIV genome. Virology 191: 709–715. doi: 10.1016/0042-6822(92)90246-l
|
[64] | Schneider R, Campbell M, Nasioulas G, Felber BK, Pavlakis GN (1997) Inactivation of the human immunodeficiency virus type 1 inhibitory elements allows Rev-independent expression of Gag and Gag/protease and particle formation. J Virol 71: 4892–4903.
|
[65] | Schwartz S, Campbell M, Nasioulas G, Harrison J, Felber BK, et al. (1992) Mutational inactivation of an inhibitory sequence in human immunodeficiency virus type 1 results in Rev-independent gag expression. J Virol 66: 7176–7182.
|
[66] | Schwartz S, Felber BK, Pavlakis GN (1992) Distinct RNA sequences in the gag region of human immunodeficiency virus type 1 decrease RNA stability and inhibit expression in the absence of Rev protein. J Virol 66: 150–159.
|
[67] | Wu X, Brewer G (2012) The regulation of mRNA stability in mammalian cells: 2.0. Gene 500: 10–21. doi: 10.1016/j.gene.2012.03.021
|
[68] | Pouch MN, Petit F, Buri J, Briand Y, Schmid HP (1995) Identification and initial characterization of a specific proteasome (prosome) associated RNase activity. J Biol Chem 270: 22023–22028. doi: 10.1074/jbc.270.37.22023
|
[69] | Yap MW, Dodding MP, Stoye JP (2006) Trim-cyclophilin A fusion proteins can restrict human immunodeficiency virus type 1 infection at two distinct phases in the viral life cycle. J Virol 80: 4061–4067. doi: 10.1128/jvi.80.8.4061-4067.2006
|
[70] | Ylinen LM, Keckesova Z, Wilson SJ, Ranasinghe S, Towers GJ (2005) Differential restriction of human immunodeficiency virus type 2 and simian immunodeficiency virus SIVmac by TRIM5alpha alleles. J Virol 79: 11580–11587. doi: 10.1128/jvi.79.18.11580-11587.2005
|
[71] | Forshey BM, von Schwedler U, Sundquist WI, Aiken C (2002) Formation of a human immunodeficiency virus type 1 core of optimal stability is crucial for viral replication. J Virol 76: 5667–5677. doi: 10.1128/jvi.76.11.5667-5677.2002
|
[72] | Kotov A, Zhou J, Flicker P, Aiken C (1999) Association of Nef with the human immunodeficiency virus type 1 core. J Virol 73: 8824–8830.
|
[73] | Welker R, Hohenberg H, Tessmer U, Huckhagel C, Krausslich HG (2000) Biochemical and structural analysis of isolated mature cores of human immunodeficiency virus type 1. J Virol 74: 1168–1177. doi: 10.1128/jvi.74.3.1168-1177.2000
|
[74] | Andersen KB, Diep HA, Zedeler A (2006) Murine leukemia virus transmembrane protein R-peptide is found in small virus core-like complexes in cells. J Gen Virol 87: 1583–1588. doi: 10.1099/vir.0.81527-0
|
[75] | Fassati A, Goff SP (2001) Characterization of intracellular reverse transcription complexes of human immunodeficiency virus type 1. J Virol 75: 3626–3635. doi: 10.1128/jvi.75.8.3626-3635.2001
|
[76] | Fassati A, Goff SP (1999) Characterization of intracellular reverse transcription complexes of Moloney murine leukemia virus. J Virol 73: 8919–8925.
|
[77] | Briggs JA, Simon MN, Gross I, Krausslich HG, Fuller SD, et al. (2004) The stoichiometry of Gag protein in HIV-1. Nat Struct Mol Biol 11: 672–675. doi: 10.1038/nsmb785
|
[78] | Hatziioannou T, Cowan S, Goff SP, Bieniasz PD, Towers GJ (2003) Restriction of multiple divergent retroviruses by Lv1 and Ref1. EMBO J 22: 385–394. doi: 10.1093/emboj/cdg042
|
[79] | Durocher Y, Perret S, Kamen A (2002) High-level and high-throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells. Nucleic Acids Res 30: E9. doi: 10.1093/nar/30.2.e9
|
[80] | Zennou V, Perez-Caballero D, Gottlinger H, Bieniasz PD (2004) APOBEC3G incorporation into human immunodeficiency virus type 1 particles. J Virol 78: 12058–12061. doi: 10.1128/jvi.78.21.12058-12061.2004
|
[81] | Niwa H, Yamamura K, Miyazaki J (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108: 193–199. doi: 10.1016/0378-1119(91)90434-d
|
[82] | Kutluay SB, Bieniasz PD (2010) Analysis of the initiating events in HIV-1 particle assembly and genome packaging. PLoS Pathog 6: e1001200. doi: 10.1371/journal.ppat.1001200
|