[1] | Dacks JB, Field MC (2007) Evolution of the eukaryotic membrane-trafficking system: origin, tempo and mode. J Cell Sci 120: 2977–2985. doi: 10.1242/jcs.013250
|
[2] | Brighouse A, Dacks JB, Field MC (2010) Rab protein evolution and the history of the eukaryotic endomembrane system. Cell Mol Life Sci 67: 3449–3465. doi: 10.1007/s00018-010-0436-1
|
[3] | Elias M, Brighouse A, Gabernet-Castello C, Field MC, Dacks JB (2012) Sculpting the endomembrane system in deep time: high resolution phylogenetics of Rab GTPases. J Cell Sci 125: 2500–2508. doi: 10.1242/jcs.101378
|
[4] | Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10: 513–525. doi: 10.1038/nrm2728
|
[5] | Bannykh SI, Plutner H, Matteson J, Balch WE (2005) The role of ARF1 and rab GTPases in polarization of the Golgi stack. Traffic 6: 803–819. doi: 10.1111/j.1600-0854.2005.00319.x
|
[6] | Tisdale EJ, Balch WE (1996) Rab2 is essential for the maturation of pre-Golgi intermediates. J Biol Chem 271: 29372–29379. doi: 10.1074/jbc.271.46.29372
|
[7] | Dacks JB, Poon PP, Field MC (2008) Phylogeny of endocytic components yields insight into the process of nonendosymbiotic organelle evolution. Proc Natl Acad Sci U S A 105: 588–593. doi: 10.1073/pnas.0707318105
|
[8] | Agop-Nersesian C, Egarter S, Langsley G, Foth BJ, Ferguson DJ, et al. (2010) Biogenesis of the Inner Membrane Complex Is Dependent on Vesicular Transport by the Alveolate Specific GTPase Rab11B. PLoS Pathog 6: e1001029. doi: 10.1371/journal.ppat.1001029
|
[9] | Jekely G (2003) Small GTPases and the evolution of the eukaryotic cell. Bioessays 25: 1129–1138. doi: 10.1002/bies.10353
|
[10] | Gurkan C, Koulov AV, Balch WE (2007) An evolutionary perspective on eukaryotic membrane trafficking. Adv Exp Med Biol 607: 73–83. doi: 10.1007/978-0-387-74021-8_6
|
[11] | Bright LJ, Kambesis N, Nelson SB, Jeong B, Turkewitz AP (2010) Comprehensive analysis reveals dynamic and evolutionary plasticity of Rab GTPases and membrane traffic in Tetrahymena thermophila. PLoS Genet 6: e1001155. doi: 10.1371/journal.pgen.1001155
|
[12] | Saito-Nakano Y, Nakahara T, Nakano K, Nozaki T, Numata O (2010) Marked amplification and diversification of products of ras genes from rat brain, Rab GTPases, in the ciliates Tetrahymena thermophila and Paramecium tetraurelia. J Eukaryot Microbiol 57: 389–399. doi: 10.1111/j.1550-7408.2010.00503.x
|
[13] | Adl SM, Leander BS, Simpson AG, Archibald JM, Anderson OR, et al. (2007) Diversity, nomenclature, and taxonomy of protists. Syst Biol 56: 684–689.
|
[14] | Langsley G, van Noort V, Carret C, Meissner M, de Villiers EP, et al. (2008) Comparative genomics of the Rab protein family in Apicomplexan parasites. Microbes Infect 10: 462–470. doi: 10.1016/j.micinf.2008.01.017
|
[15] | Elias M, Patron NJ, Keeling PJ (2009) The RAB family GTPase Rab1A from Plasmodium falciparum defines a unique paralog shared by chromalveolates and rhizaria. J Eukaryot Microbiol 56: 348–356. doi: 10.1111/j.1550-7408.2009.00408.x
|
[16] | Nevin WD, Dacks JB (2009) Repeated secondary loss of adaptin complex genes in the Apicomplexa. Parasitol Int 58: 86–94. doi: 10.1016/j.parint.2008.12.002
|
[17] | Field MC, Dacks JB (2009) First and last ancestors: reconstructing evolution of the endomembrane system with ESCRTs, vesicle coat proteins, and nuclear pore complexes. Curr Opin Cell Biol 21: 4–13. doi: 10.1016/j.ceb.2008.12.004
|
[18] | Leung KF, Dacks JB, Field MC (2008) Evolution of the multivesicular body ESCRT machinery; retention across the eukaryotic lineage. Traffic 9: 1698–1716. doi: 10.1111/j.1600-0854.2008.00797.x
|
[19] | Williams RL, Urbe S (2007) The emerging shape of the ESCRT machinery. Nat Rev Mol Cell Biol 8: 355–368. doi: 10.1038/nrm2162
|
[20] | Harper JM, Huynh MH, Coppens I, Parussini F, Moreno S, et al. (2006) A cleavable propeptide influences Toxoplasma infection by facilitating the trafficking and secretion of the TgMIC2-M2AP invasion complex. Mol Biol Cell 17: 4551–4563. doi: 10.1091/mbc.e06-01-0064
|
[21] | Miranda K, Pace DA, Cintron R, Rodrigues JC, Fang J, et al. (2010) Characterization of a novel organelle in Toxoplasma gondii with similar composition and function to the plant vacuole. Mol Microbiol 76: 1358–1375. doi: 10.1111/j.1365-2958.2010.07165.x
|
[22] | Parussini F, Coppens I, Shah PP, Diamond SL, Carruthers VB (2010) Cathepsin L occupies a vacuolar compartment and is a protein maturase within the endo/exocytic system of Toxoplasma gondii. Mol Microbiol 76: 1340–1357. doi: 10.1111/j.1365-2958.2010.07181.x
|
[23] | Breinich MS, Ferguson DJ, Foth BJ, van Dooren GG, Lebrun M, et al. (2009) A dynamin is required for the biogenesis of secretory organelles in Toxoplasma gondii. Curr Biol 19: 277–286. doi: 10.1016/j.cub.2009.01.039
|
[24] | Sloves PJ, Delhaye S, Mouveaux T, Werkmeister E, Slomianny C, et al. (2012) Toxoplasma Sortilin-like Receptor Regulates Protein Transport and Is Essential for Apical Secretory Organelle Biogenesis and Host Infection. Cell Host Microbe 11: 515–527. doi: 10.1016/j.chom.2012.03.006
|
[25] | Herm-Gotz A, Agop-Nersesian C, Munter S, Grimley JS, Wandless TJ, et al. (2007) Rapid control of protein level in the apicomplexan Toxoplasma gondii. Nat Methods 4: 1003–1005. doi: 10.1038/nmeth1134
|
[26] | Stedman TT, Sussmann AR, Joiner KA (2003) Toxoplasma gondii Rab6 mediates a retrograde pathway for sorting of constitutively secreted proteins to the Golgi complex. J Biol Chem 278: 5433–5443. doi: 10.1074/jbc.m209390200
|
[27] | Agop-Nersesian C, Naissant B, Ben Rached F, Rauch M, Kretzschmar A, et al. (2009) Rab11A-controlled assembly of the inner membrane complex is required for completion of apicomplexan cytokinesis. PLoS Pathog 5: e1000270. doi: 10.1371/journal.ppat.1000270
|
[28] | Bucci C, Parton RG, Mather IH, Stunnenberg H, Simons K, et al. (1992) The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell 70: 715–728. doi: 10.1016/0092-8674(92)90306-w
|
[29] | van der Sluijs P, Hull M, Webster P, Male P, Goud B, et al. (1992) The small GTP-binding protein rab4 controls an early sorting event on the endocytic pathway. Cell 70: 729–740. doi: 10.1016/0092-8674(92)90307-x
|
[30] | Schmidt DJ, Rose DJ, Saxton WM, Strome S (2005) Functional analysis of cytoplasmic dynein heavy chain in Caenorhabditis elegans with fast-acting temperature-sensitive mutations. Mol Biol Cell 16: 1200–1212. doi: 10.1091/mbc.e04-06-0523
|
[31] | El Hajj H, Papoin J, Cerede O, Garcia-Reguet N, Soete M, et al. (2008) Molecular signals in the trafficking of Toxoplasma gondii protein MIC3 to the micronemes. Eukaryot Cell 7: 1019–1028. doi: 10.1128/ec.00413-07
|
[32] | Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19: 780–782. doi: 10.1364/ol.19.000780
|
[33] | Jewett TJ, Sibley LD (2004) The toxoplasma proteins MIC2 and M2AP form a hexameric complex necessary for intracellular survival. J Biol Chem 279: 9362–9369. doi: 10.1074/jbc.m312590200
|
[34] | Huynh MH, Carruthers VB (2006) Toxoplasma MIC2 is a major determinant of invasion and virulence. PLoS Pathog 2: e84. doi: 10.1371/journal.ppat.0020084
|
[35] | Kessler H, Herm-Gotz A, Hegge S, Rauch M, Soldati-Favre D, et al. (2008) Microneme protein 8–a new essential invasion factor in Toxoplasma gondii. J Cell Sci 121: 947–956. doi: 10.1242/jcs.022350
|
[36] | Mital J, Meissner M, Soldati D, Ward GE (2005) Conditional expression of Toxoplasma gondii apical membrane antigen-1 (TgAMA1) demonstrates that TgAMA1 plays a critical role in host cell invasion. Mol Biol Cell 16: 4341–4349. doi: 10.1091/mbc.e05-04-0281
|
[37] | Bradley PJ, Ward C, Cheng SJ, Alexander DL, Coller S, et al. (2005) Proteomic analysis of rhoptry organelles reveals many novel constituents for host-parasite interactions in Toxoplasma gondii. J Biol Chem 280: 34245–34258. doi: 10.1074/jbc.m504158200
|
[38] | Huynh MH, Rabenau KE, Harper JM, Beatty WL, Sibley LD, et al. (2003) Rapid invasion of host cells by Toxoplasma requires secretion of the MIC2-M2AP adhesive protein complex. Embo J 22: 2082–2090. doi: 10.1093/emboj/cdg217
|
[39] | Boothroyd JC, Dubremetz JF (2008) Kiss and spit: the dual roles of Toxoplasma rhoptries. Nat Rev Microbiol 6: 79–88. doi: 10.1038/nrmicro1800
|
[40] | Zeigerer A, Gilleron J, Bogorad RL, Marsico G, Nonaka H, et al. (2012) Rab5 is necessary for the biogenesis of the endolysosomal system in vivo. Nature 485: 465–470. doi: 10.1038/nature11133
|
[41] | Valls LA, Hunter CP, Rothman JH, Stevens TH (1987) Protein sorting in yeast: the localization determinant of yeast vacuolar carboxypeptidase Y resides in the propeptide. Cell 48: 887–897. doi: 10.1016/0092-8674(87)90085-7
|
[42] | Rothman JH, Stevens TH (1986) Protein sorting in yeast: mutants defective in vacuole biogenesis mislocalize vacuolar proteins into the late secretory pathway. Cell 47: 1041–1051. doi: 10.1016/0092-8674(86)90819-6
|
[43] | Bankaitis VA, Johnson LM, Emr SD (1986) Isolation of yeast mutants defective in protein targeting to the vacuole. Proc Natl Acad Sci U S A 83: 9075–9079. doi: 10.1073/pnas.83.23.9075
|
[44] | Robinson JS, Klionsky DJ, Banta LM, Emr SD (1988) Protein sorting in Saccharomyces cerevisiae: isolation of mutants defective in the delivery and processing of multiple vacuolar hydrolases. Mol Cell Biol 8: 4936–4948.
|
[45] | Ngo HM, Yang M, Joiner KA (2004) Are rhoptries in Apicomplexan parasites secretory granules or secretory lysosomal granules? Mol Microbiol 52: 1531–1541. doi: 10.1111/j.1365-2958.2004.04056.x
|
[46] | Donald RG, Carter D, Ullman B, Roos DS (1996) Insertional tagging, cloning, and expression of the Toxoplasma gondii hypoxanthine-xanthine-guanine phosphoribosyltransferase gene. Use as a selectable marker for stable transformation. J Biol Chem 271: 14010–14019. doi: 10.1074/jbc.271.24.14010
|
[47] | Kim K, Soldati D, Boothroyd JC (1993) Gene replacement in Toxoplasma gondii with chloramphenicol acetyltransferase as selectable marker. Science 262: 911–914. doi: 10.1126/science.8235614
|
[48] | Donald RG, Roos DS (1993) Stable molecular transformation of Toxoplasma gondii: a selectable dihydrofolate reductase-thymidylate synthase marker based on drug-resistance mutations in malaria. Proc Natl Acad Sci U S A 90: 11703–11707. doi: 10.1073/pnas.90.24.11703
|
[49] | Colosimo A, Xu Z, Novelli G, Dallapiccola B, Gruenert DC (1999) Simple version of “megaprimer” PCR for site-directed mutagenesis. Biotechniques 26: 870–873.
|
[50] | Mann T, Beckers C (2001) Characterization of the subpellicular network, a filamentous membrane skeletal component in the parasite Toxoplasma gondii. Mol Biochem Parasitol 115: 257–268. doi: 10.1016/s0166-6851(01)00289-4
|
[51] | Adjogble KD, Mercier C, Dubremetz JF, Hucke C, Mackenzie CR, et al. (2004) GRA9, a new Toxoplasma gondii dense granule protein associated with the intravacuolar network of tubular membranes. Int J Parasitol 34: 1255–1264. doi: 10.1016/j.ijpara.2004.07.011
|
[52] | El Hajj H, Lebrun M, Fourmaux MN, Vial H, Dubremetz JF (2007) Inverted topology of the Toxoplasma gondii ROP5 rhoptry protein provides new insights into the association of the ROP2 protein family with the parasitophorous vacuole membrane. Cell Microbiol 9: 54–64. doi: 10.1111/j.1462-5822.2006.00767.x
|
[53] | Sadak A, Taghy Z, Fortier B, Dubremetz JF (1988) Characterization of a family of rhoptry proteins of Toxoplasma gondii. Mol Biochem Parasitol 29: 203–211. doi: 10.1016/0166-6851(88)90075-8
|
[54] | Garcia-Reguet N, Lebrun M, Fourmaux MN, Mercereau-Puijalon O, Mann T, et al. (2000) The microneme protein MIC3 of Toxoplasma gondii is a secretory adhesin that binds to both the surface of the host cells and the surface of the parasite. Cell Microbiol 2: 353–364. doi: 10.1046/j.1462-5822.2000.00064.x
|
[55] | Meissner M, Reiss M, Viebig N, Carruthers VB, Toursel C, et al. (2002) A family of transmembrane microneme proteins of Toxoplasma gondii contain EGF-like domains and function as escorters. J Cell Sci 115: 563–574.
|
[56] | Wan KL, Carruthers VB, Sibley LD, Ajioka JW (1997) Molecular characterisation of an expressed sequence tag locus of Toxoplasma gondii encoding the micronemal protein MIC2. Mol Biochem Parasitol 84: 203–214. doi: 10.1016/s0166-6851(96)02796-x
|
[57] | Harper JM, Zhou XW, Pszenny V, Kafsack BF, Carruthers VB (2004) The novel coccidian micronemal protein MIC11 undergoes proteolytic maturation by sequential cleavage to remove an internal propeptide. Int J Parasitol 34: 1047–1058. doi: 10.1016/j.ijpara.2004.05.006
|
[58] | Kafsack BF, Pena JD, Coppens I, Ravindran S, Boothroyd JC, et al. (2009) Rapid membrane disruption by a perforin-like protein facilitates parasite exit from host cells. Science 323: 530–533. doi: 10.1126/science.1165740
|
[59] | Carruthers VB, Hakansson S, Giddings OK, Sibley LD (2000) Toxoplasma gondii uses sulfated proteoglycans for substrate and host cell attachment. Infect Immun 68: 4005–4011. doi: 10.1128/iai.68.7.4005-4011.2000
|
[60] | Pfluger SL, Goodson HV, Moran JM, Ruggiero CJ, Ye X, et al. (2005) Receptor for retrograde transport in the apicomplexan parasite Toxoplasma gondii. Eukaryot Cell 4: 432–442. doi: 10.1128/ec.4.2.432-442.2005
|
[61] | van Dooren GG, Reiff SB, Tomova C, Meissner M, Humbel BM, et al. (2009) A novel dynamin-related protein has been recruited for apicoplast fission in Toxoplasma gondii. Curr Biol 19: 267–276. doi: 10.1016/j.cub.2008.12.048
|
[62] | Carey KL, Westwood NJ, Mitchison TJ, Ward GE (2004) A small-molecule approach to studying invasive mechanisms of Toxoplasma gondii. Proc Natl Acad Sci U S A 101: 7433–7438. doi: 10.1073/pnas.0307769101
|
[63] | Punge A, Rizzoli SO, Jahn R, Wildanger JD, Meyer L, et al. (2008) 3D reconstruction of high-resolution STED microscope images. Microsc Res Tech 71: 644–650. doi: 10.1002/jemt.20602
|
[64] | Buckers J, Wildanger D, Vicidomini G, Kastrup L, Hell SW Simultaneous multi-lifetime multi-color STED imaging for colocalization analyses. Opt Express 19: 3130–3143. doi: 10.1364/oe.19.003130
|
[65] | Wilkes JM, Doerig C (2008) The protein-phosphatome of the human malaria parasite Plasmodium falciparum. BMC Genomics 9: 412. doi: 10.1186/1471-2164-9-412
|
[66] | Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, et al. (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31: 3497–3500. doi: 10.1093/nar/gkg500
|
[67] | Notredame C, Higgins DG, Heringa J (2000) T-Coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol 302: 205–217. doi: 10.1006/jmbi.2000.4042
|
[68] | Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14: 755–763. doi: 10.1093/bioinformatics/14.9.755
|