全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A gp41 MPER-specific Llama VHH Requires a Hydrophobic CDR3 for Neutralization but not for Antigen Recognition

DOI: 10.1371/journal.ppat.1003202

Full-Text   Cite this paper   Add to My Lib

Abstract:

The membrane proximal external region (MPER) of the HIV-1 glycoprotein gp41 is targeted by the broadly neutralizing antibodies 2F5 and 4E10. To date, no immunization regimen in animals or humans has produced HIV-1 neutralizing MPER-specific antibodies. We immunized llamas with gp41-MPER proteoliposomes and selected a MPER-specific single chain antibody (VHH), 2H10, whose epitope overlaps with that of mAb 2F5. Bi-2H10, a bivalent form of 2H10, which displayed an approximately 20-fold increased affinity compared to the monovalent 2H10, neutralized various sensitive and resistant HIV-1 strains, as well as SHIV strains in TZM-bl cells. X-ray and NMR analyses combined with mutagenesis and modeling revealed that 2H10 recognizes its gp41 epitope in a helical conformation. Notably, tryptophan 100 at the tip of the long CDR3 is not required for gp41 interaction but essential for neutralization. Thus bi-2H10 is an anti-MPER antibody generated by immunization that requires hydrophobic CDR3 determinants in addition to epitope recognition for neutralization similar to the mode of neutralization employed by mAbs 2F5 and 4E10.

References

[1]  Walker LM, Phogat SK, Chan-Hui PY, Wagner D, Phung P, et al. (2009) Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science 326(5950): 285–9. doi: 10.1126/science.1178746
[2]  Scheid JF, Mouquet H, Feldhahn N, Seaman MS, Velinzon K, et al. (2009) Broad diversity of neutralizing antibodies isolated from memory B cells in HIV-infected individuals. Nature 458(7238): 636–40. doi: 10.1038/nature07930
[3]  Wu X, Yang ZY, Li Y, Hogerkorp CM, Schief WR, et al. (2010) Rational Design of Envelope Identifies Broadly Neutralizing Human Monoclonal Antibodies to HIV-1. Science 329(5993): 856–61. doi: 10.1126/science.1187659
[4]  Zhou T, Georgiev I, Wu X, Yang ZY, Dai K, et al. (2010) Structural basis for broad and potent neutralization of HIV-1 by antibody VRC01. Science 329(5993): 811–7. doi: 10.1126/science.1192819
[5]  Corti D, Langedijk JP, Hinz A, Seaman MS, Vanzetta F, et al. (2010) Analysis of memory B cell responses and isolation of novel monoclonal antibodies with neutralizing breadth from HIV-1-infected individuals. PLoS One 5(1): e8805. doi: 10.1371/journal.pone.0008805
[6]  Scheid JF, Mouquet H, Ueberheide B, Diskin R, Klein F, et al. (2011) Sequence and Structural Convergence of Broad and Potent HIV Antibodies That Mimic CD4 Binding. Science 333(6049): 1633–7. doi: 10.1126/science.1207227
[7]  Wu X, Zhou T, Zhu J, Zhang B, Georgiev I, et al. (2011) Focused evolution of HIV-1 neutralizing antibodies revealed by structures and deep sequencing. Science 333(6049): 1593–602. doi: 10.1126/science.1207532
[8]  Walker LM, Huber M, Doores KJ, Falkowska E, Pejchal R, et al. (2011) Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature 477(7365): 466–70. doi: 10.1038/nature10373
[9]  Huang J, Ofek G, Laub L, Louder MK, Doria-Rose NA, et al. (2012) Broad and potent neutralization of HIV-1 by a gp41-specific human antibody. Nature 491(7424): 406–12. doi: 10.1038/nature11544
[10]  Kwong PD, Mascola JR (2012) Human Antibodies that Neutralize HIV-1: Identification, Structures, and B Cell Ontogenies. Immunity 37(3): 412–425. doi: 10.1016/j.immuni.2012.08.012
[11]  Kovacs JM, Nkolola JP, Peng H, Cheung A, Perry J, et al. (2012) HIV-1 envelope trimer elicits more potent neutralizing antibody responses than monomeric gp120. Proc Natl Acad Sci U S A 109(30): 12111–6. doi: 10.1073/pnas.1204533109
[12]  Sellhorn G, Kraft Z, Caldwell Z, Ellingson K, Mineart C, et al. (2012) Engineering, expression, purification, and characterization of stable clade A/B recombinant soluble heterotrimeric gp140 proteins. J Virol 86(1): 128–42. doi: 10.1128/jvi.06363-11
[13]  Sundling C, Forsell MN, O'Dell S, Feng Y, Chakrabarti B, et al. (2010) Soluble HIV-1 Env trimers in adjuvant elicit potent and diverse functional B cell responses in primates. J Exp Med 207(9): 2003–17. doi: 10.1084/jem.20100025
[14]  Feng Y, McKee K, Tran K, O'Dell S, Schmidt SD, et al. (2012) Biochemically defined HIV-1 envelope glycoprotein variant immunogens display differential binding and neutralizing specificities to the CD4-binding site. J Biol Chem 287(8): 5673–86. doi: 10.1074/jbc.m111.317776
[15]  Kwong PD, Mascola JR, Nabel GJ (2011) Rational Design of Vaccines to Elicit Broadly Neutralizing Antibodies to HIV-1. Cold Spring Harb Perspect Med 1(1): a007278. doi: 10.1101/cshperspect.a007278
[16]  McElrath MJ, Haynes BF (2010) Induction of Immunity to Human Immunodeficiency Virus Type-1 by Vaccination. Immunity 33(4): 542–554. doi: 10.1016/j.immuni.2010.09.011
[17]  Walker LM, Burton DR (2010) Rational antibody-based HIV-1 vaccine design: current approaches and future directions. Current Opinion in Immunology 22(3): 358–66. doi: 10.1016/j.coi.2010.02.012
[18]  Weissenhorn W, Hinz A, Gaudin Y (2007) Virus membrane fusion. FEBS Lett 581(11): 2150–5. doi: 10.1016/j.febslet.2007.01.093
[19]  Harrison SC (2008) Viral membrane fusion. Nat Struct Mol Biol 15(7): 690–698. doi: 10.1038/nsmb.1456
[20]  Muster T, Steindl F, Purtscher M, Trkola A, Klima A, et al. (1993) A conserved neutralizing epitope on gp41 of human immunodeficiency virus type 1. J Virol 67(11): 6642–7.
[21]  Stiegler G, Kunert R, Purtscher M, Wolbank S, Voglauer R, et al. (2001) A potent cross-clade neutralizing human monoclonal antibody against a novel epitope on gp41 of human immunodeficiency virus type 1. AIDS Res Hum Retroviruses 17(18): 1757–65. doi: 10.1089/08892220152741450
[22]  Zwick MB, Labrijn AF, Wang M, Spenlehauer C, Saphire EO, et al. (2001) Broadly neutralizing antibodies targeted to the membrane-proximal external region of human immunodeficiency virus type 1 glycoprotein gp41. J Virol 75(22): 10892–905. doi: 10.1128/jvi.75.22.10892-10905.2001
[23]  Nelson JD, Brunel FM, Jensen R, Crooks ET, Cardoso RM, et al. (2007) An affinity-enhanced neutralizing antibody against the membrane-proximal external region of human immunodeficiency virus type 1 gp41 recognizes an epitope between those of 2F5 and 4E10. J Virol 81(8): 4033–43. doi: 10.1128/jvi.02588-06
[24]  Ofek G, Tang M, Sambor A, Katinger H, Mascola JR, et al. (2004) Structure and mechanistic analysis of the anti-human immunodeficiency virus type 1 antibody 2F5 in complex with its gp41 epitope. J Virol 78(19): 10724–37. doi: 10.1128/jvi.78.19.10724-10737.2004
[25]  Cardoso RM, Zwick MB, Stanfield RL, Kunert R, Binley JM, et al. (2005) Broadly neutralizing anti-HIV antibody 4E10 recognizes a helical conformation of a highly conserved fusion-associated motif in gp41. Immunity 22(2): 163–73. doi: 10.1016/j.immuni.2004.12.011
[26]  Pejchal R, Gach JS, Brunel FM, Cardoso RM, Stanfield RL, et al. (2009) A Conformational Switch in Human Immunodeficiency Virus gp41 Revealed by the Structures of Overlapping Epitopes Recognized by Neutralizing Antibodies. J Virol 83(17): 8451–8462. doi: 10.1128/jvi.00685-09
[27]  Weissenhorn W, Dessen A, Harrison SC, Skehel JJ, Wiley DC (1997) Atomic structure of the ectodomain from HIV-1 gp41. Nature 387(6631): 426–30. doi: 10.1038/387426a0
[28]  Chan DC, Fass D, Berger JM, Kim PS (1997) Core structure of gp41 from the HIV envelope glycoprotein. Cell 89(2): 263–73. doi: 10.1016/s0092-8674(00)80205-6
[29]  Buzon V, Natrajan G, Schibli D, Campelo F, Kozlov MM, et al. (2010) Crystal Structure of HIV-1 gp41 Including Both Fusion Peptide and Membrane Proximal External Regions. PLoS Pathog 6(5): e1000880. doi: 10.1371/journal.ppat.1000880
[30]  Ferrantelli F, Hofmann-Lehmann R, Rasmussen RA, Wang T, Xu W, et al. (2003) Post-exposure prophylaxis with human monoclonal antibodies prevented SHIV89.6P infection or disease in neonatal macaques. Aids 17(3): 301–309. doi: 10.1097/00002030-200302140-00003
[31]  Mascola JR, Lewis MG, Stiegler G, Harris D, VanCott TC, et al. (1999) Protection of Macaques against pathogenic simian/human immunodeficiency virus 89.6PD by passive transfer of neutralizing antibodies. J Virol 73(5): 4009–18.
[32]  Mascola JR, Stiegler G, VanCott TC, Katinger H, Carpenter CB, et al. (2000) Protection of macaques against vaginal transmission of a pathogenic HIV-1/SIV chimeric virus by passive infusion of neutralizing antibodies. Nat Med 6(2): 207–10. doi: 10.1097/00002030-200102001-00018
[33]  Baba TW, Liska V, Hofmann-Lehmann R, Vlasak J, Xu W, et al. (2000) Human neutralizing monoclonal antibodies of the IgG1 subtype protect against mucosal simian-human immunodeficiency virus infection. Nat Med 6(2): 200–6.
[34]  Hofmann-Lehmann R, Vlasak J, Rasmussen RA, Smith BA, Baba TW, et al. (2001) Postnatal passive immunization of neonatal macaques with a triple combination of human monoclonal antibodies against oral simian-human immunodeficiency virus challenge. J Virol 75(16): 7470–80. doi: 10.1128/jvi.75.16.7470-7480.2001
[35]  Hessell AJ, Rakasz EG, Poignard P, Hangartner L, Landucci G, et al. (2009) Broadly Neutralizing Human Anti-HIV Antibody 2G12 Is Effective in Protection against Mucosal SHIV Challenge Even at Low Serum Neutralizing Titers. PLoS Pathog 5(5): e1000433. doi: 10.1371/journal.ppat.1000433
[36]  Mantis NJ, Kozlowski PA, Mielcarz DW, Weissenhorn W, Neutra MR (2001) Immunization of mice with recombinant gp41 in a systemic prime/mucosal boost protocol induces HIV-1-specific serum IgG and secretory IgA antibodies. Vaccine 19(28–29): 3990–4001. doi: 10.1016/s0264-410x(01)00115-3
[37]  Lenz O, Dittmar MT, Wagner A, Ferko B, Vorauer-Uhl K, Stiegler G, Weissenhorn W (2005) Trimeric membrane-anchored gp41 inhibits HIV membrane fusion. J Biol Chem 280(6): 4095–101. doi: 10.1074/jbc.m411088200
[38]  Qiao ZS, Kim M, Reinhold B, Montefiori D, Wang JH, Reinherz EL (2005) Design, expression, and immunogenicity of a soluble HIV trimeric envelope fragment adopting a prefusion gp41 configuration. J Biol Chem 280(24): 23138–46. doi: 10.1074/jbc.m414515200
[39]  Law M, Cardoso RM, Wilson IA, Burton DR (2007) Antigenic and immunogenic study of membrane-proximal external region-grafted gp120 antigens by a DNA prime-protein boost immunization strategy. J Virol 81(8): 4272–85. doi: 10.1128/jvi.02536-06
[40]  Phogat S, Svehla K, Tang M, Spadaccini A, Muller J, et al. (2008) Analysis of the human immunodeficiency virus type 1 gp41 membrane proximal external region arrayed on hepatitis B surface antigen particles. Virology 373(1): 72–84. doi: 10.1016/j.virol.2007.11.005
[41]  Hinz A, Schoehn G, Quendler H, Hulsik DL, Stiegler G, et al. (2009) Characterization of a trimeric MPER containing HIV-1 gp41 antigen. Virology 390(2): 221–7. doi: 10.1016/j.virol.2009.05.015
[42]  Ye L, Wen Z, Dong K, Wang X, Bu Z, et al. (2011) Induction of HIV Neutralizing Antibodies against the MPER of the HIV Envelope Protein by HA/gp41 Chimeric Protein-Based DNA and VLP Vaccines. PLoS One 6(5): e14813. doi: 10.1371/journal.pone.0014813
[43]  Jain S, Patrick AJ, Rosenthal KL (2010) Multiple tandem copies of conserved gp41 epitopes incorporated in gag virus-like particles elicit systemic and mucosal antibodies in an optimized heterologous vector delivery regimen. Vaccine 28(43): 7070–80. doi: 10.1016/j.vaccine.2010.08.009
[44]  Dennison SM, Sutherland LL, Jaeger FH, Anasti KM, Parks R, et al. (2011) Induction of antibodies in rhesus macaques that recognize a fusion-intermediate conformation of HIV-1 gp41. PLoS One 6(11): e27824. doi: 10.1371/journal.pone.0027824
[45]  Zhou M, Kostoula I, Brill B, Panou E, Sakarellos-Daitsiotis M, et al. (2012) Prime boost vaccination approaches with different conjugates of a new HIV-1 gp41 epitope encompassing the membrane proximal external region induce neutralizing antibodies in mice. Vaccine 30(11): 1911–6. doi: 10.1016/j.vaccine.2012.01.026
[46]  Haynes BF, Fleming J, St Clair EW, Katinger H, Stiegler G, et al. (2005) Cardiolipin polyspecific autoreactivity in two broadly neutralizing HIV-1 antibodies. Science 308(5730): 1906–8. doi: 10.1126/science.1111781
[47]  Mouquet H, Scheid JF, Zoller MJ, Krogsgaard M, Ott RG, et al. (2010) Polyreactivity increases the apparent affinity of anti-HIV antibodies by heteroligation. Nature 467(7315): 591–5. doi: 10.1038/nature09385
[48]  Alam SM, Morelli M, Dennison SM, Liao HX, Zhang R, et al. (2009) Role of HIV membrane in neutralization by two broadly neutralizing antibodies. Proc Natl Acad Sci U S A 106(48): 20234–9. doi: 10.1073/pnas.0908713106
[49]  Scherer EM, Leaman DP, Zwick MB, McMichael AJ, Burton DR, et al. (2010) Aromatic residues at the edge of the antibody combining site facilitate viral glycoprotein recognition through membrane interactions. Proc Natl Acad Sci U S A 107(4): 1529–34. doi: 10.1073/pnas.0909680107
[50]  Ofek G, McKee K, Yang Y, Yang ZY, Skinner J, et al. (2010) Relationship between antibody 2F5 neutralization of HIV-1 and hydrophobicity of its heavy chain third complementarity-determining region. J Virol 84(6): 2955–62. doi: 10.1128/jvi.02257-09
[51]  Julien JP, Huarte N, Maeso R, Taneva SG, Cunningham A, et al. (2010) Ablation of the complementarity-determining region H3 apex of the anti-HIV-1 broadly neutralizing antibody 2F5 abrogates neutralizing capacity without affecting core epitope binding. J Virol 84(9): 4136–47. doi: 10.1128/jvi.02357-09
[52]  Sun ZY, Oh KJ, Kim M, Yu J, Brusic V, et al. (2008) HIV-1 broadly neutralizing antibody extracts its epitope from a kinked gp41 ectodomain region on the viral membrane. Immunity 28(1): 52–63. doi: 10.1016/j.immuni.2007.11.018
[53]  Kim M, Sun ZY, Rand KD, Shi X, Song L, et al. (2011) Antibody mechanics on a membrane-bound HIV segment essential for GP41-targeted viral neutralization. Nat Struct Mol Biol 18(11): 1235–43. doi: 10.1038/nsmb.2154
[54]  Guenaga J, Wyatt RT (2012) Structure-guided Alterations of the gp41-directed HIV-1 Broadly Neutralizing Antibody 2F5 Reveal New Properties Regarding its Neutralizing Function. PLoS Pathog 8(7): e1002806. doi: 10.1371/journal.ppat.1002806
[55]  Montero M, Gulzar N, Klaric KA, Donald JE, Lepik C, et al. (2012) Neutralizing Epitopes in the Membrane-Proximal External Region of HIV-1 gp41 Are Influenced by the Transmembrane Domain and the Plasma Membrane. J Virol 86(6): 2930–41. doi: 10.1128/jvi.06349-11
[56]  Chakrabarti BK, Walker LM, Guenaga JF, Ghobbeh A, Poignard P, et al. (2011) Direct antibody access to the HIV-1 membrane-proximal external region positively correlates with neutralization sensitivity. J Virol 85(16): 8217–26. doi: 10.1128/jvi.00756-11
[57]  Rathinakumar R, Dutta M, Zhu P, Johnson WE, Roux KH (2012) Binding of anti-membrane-proximal gp41 monoclonal antibodies to CD4-liganded and -unliganded human immunodeficiency virus type 1 and simian immunodeficiency virus virions. J Virol 86(3): 1820–31. doi: 10.1128/jvi.05489-11
[58]  Ruprecht CR, Krarup A, Reynell L, Mann AM, Brandenberg OF, et al. (2011) MPER-specific antibodies induce gp120 shedding and irreversibly neutralize HIV-1. J Exp Med 208(3): 439–54. doi: 10.1084/jem.20101907
[59]  Klein JS, Gnanapragasam PN, Galimidi RP, Foglesong CP, West AP, et al. (2009) Examination of the contributions of size and avidity to the neutralization mechanisms of the anti-HIV antibodies b12 and 4E10. Proc Natl Acad Sci U S A 106(18): 7385–90. doi: 10.1073/pnas.0811427106
[60]  Frey G, Peng H, Rits-Volloch S, Morelli M, Cheng Y, et al. (2008) A fusion-intermediate state of HIV-1 gp41 targeted by broadly neutralizing antibodies. Proc Natl Acad Sci U S A 105(10): 3739–44. doi: 10.1073/pnas.0800255105
[61]  Luftig MA, Mattu M, Di Giovine P, Geleziunas R, Hrin R, et al. (2006) Structural basis for HIV-1 neutralization by a gp41 fusion intermediate-directed antibody. Nat Struct Mol Biol 13(8): 740–7. doi: 10.1038/nsmb1127
[62]  Sabin C, Corti D, Buzon V, Seaman MS, Lutje Hulsik D, et al. (2010) Crystal structure and size-dependent neutralization properties of HK20, a human antibody binding to the highly conserved heptad repeat 1 of gp41. PLoS Pathogens 6(11): e1001195. doi: 10.1371/journal.ppat.1001195
[63]  Gustchina E, Li M, Louis JM, Anderson DE, Lloyd J, et al. (2010) Structural basis of HIV-1 neutralization by affinity matured Fabs directed against the internal trimeric coiled-coil of gp41. PLoS Pathog 6(11): e1001182. doi: 10.1371/journal.ppat.1001182
[64]  Shen X, Parks RJ, Montefiori DC, Kirchherr JL, Keele BF, et al. (2009) In Vivo gp41 Antibodies Targeting the 2F5 Monoclonal Antibody Epitope Mediate Human Immunodeficiency Virus Type 1 Neutralization Breadth. J Virol 83(8): 3617–3625. doi: 10.1128/jvi.02631-08
[65]  Zhu Z, Qin HR, Chen W, Zhao Q, Shen X, et al. (2011) Cross-reactive HIV-1-neutralizing human monoclonal antibodies identified from a patient with 2F5-like antibodies. J Virol 85(21): 11401–8. doi: 10.1128/jvi.05312-11
[66]  Alam SM, Liao HX, Dennison SM, Jaeger F, Parks R, et al. (2011) Differential reactivity of germ line allelic variants of a broadly neutralizing HIV-1 antibody to a gp41 fusion intermediate conformation. J Virol 85(22): 11725–31. doi: 10.1128/jvi.05680-11
[67]  Morris L, Chen X, Alam M, Tomaras G, Zhang R, et al. (2011) Isolation of a human anti-HIV gp41 membrane proximal region neutralizing antibody by antigen-specific single B cell sorting. PLoS One 6(9): e23532. doi: 10.1371/journal.pone.0023532
[68]  Alam SM, Scearce RM, Parks RJ, Plonk K, Plonk SG, et al. (2008) Human immunodeficiency virus type 1 gp41 antibodies that mask membrane proximal region epitopes: antibody binding kinetics, induction, and potential for regulation in acute infection. J Virol 82(1): 115–25. doi: 10.1128/jvi.00927-07
[69]  Pietzsch J, Scheid JF, Mouquet H, Seaman MS, Broder CC, et al. (2010) Anti-gp41 antibodies cloned from HIV-infected patients with broadly neutralizing serologic activity. J Virol 84(10): 5032–42. doi: 10.1128/jvi.00154-10
[70]  Liao HX, Chen X, Munshaw S, Zhang R, Marshall DJ, et al. (2012) Initial antibodies binding to HIV-1 gp41 in acutely infected subjects are polyreactive and highly mutated. J Exp Med 208(11): 2237–49. doi: 10.1084/jem.20110363
[71]  Verkoczy L, Diaz M, Holl TM, Ouyang YB, Bouton-Verville H, et al. (2010) Autoreactivity in an HIV-1 broadly reactive neutralizing antibody variable region heavy chain induces immunologic tolerance. Proc Natl Acad Sci U S A 107(1): 181–6. doi: 10.1073/pnas.0912914107
[72]  Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, et al. (1993) Naturally occurring antibodies devoid of light chains. Nature 363(6428): 446–8. doi: 10.1038/363446a0
[73]  Forsman A, Beirnaert E, Aasa-Chapman MMI, Hoorelbeke B, Hijazi K, et al. (2008) Llama Antibody Fragments with Cross-Subtype Human Immunodeficiency Virus Type 1 (HIV-1)-Neutralizing Properties and High Affinity for HIV-1 gp120. J Virol 82(24): 12069–12081. doi: 10.1128/jvi.01379-08
[74]  Koh WW, Steffensen S, Gonzalez-Pajuelo M, Hoorelbeke B, Gorlani A, et al. (2010) Generation of a family-specific phage library of llama single chain antibody fragments that neutralize HIV-1. J Biol Chem 285(25): 19116–24. doi: 10.1074/jbc.m110.116699
[75]  Jahnichen S, Blanchetot C, Maussang D, Gonzalez-Pajuelo M, Chow KY, et al. (2011) CXCR4 nanobodies (VHH-based single variable domains) potently inhibit chemotaxis and HIV-1 replication and mobilize stem cells. Proc Natl Acad Sci U S A 107(47): 20565–70. doi: 10.1073/pnas.1012865107
[76]  Hinz A, Lutje Hulsik D, Forsman A, Koh WW, Belrhali H, et al. (2010) Crystal structure of the neutralizing Llama V(HH) D7 and its mode of HIV-1 gp120 interaction. PLoS One 5(5): e10482. doi: 10.1371/journal.pone.0010482
[77]  McCoy LE, Quigley AF, Strokappe NM, Bulmer-Thomas B, Seaman MS, et al. (2012) Potent and broad neutralization of HIV-1 by a llama antibody elicited by immunization. J Exp Med 209(6): 1091–103. doi: 10.1084/jem.20112655
[78]  Strokappe N, Szynol A, Aasa-Chapman M, Gorlani A, Forsman Quigley A, et al. (2012) Llama antibody fragments recognizing various epitopes of the CD4bs neutralize a broad range of HIV-1 subtypes A, B and C. PLoS One 7(3): e33298. doi: 10.1371/journal.pone.0033298
[79]  Harbury PB, Zhang T, Kim PS, Alber T (1993) A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. Science 262(5138): 1401–7. doi: 10.1126/science.8248779
[80]  de Haard HJ, Kazemier B, Koolen MJ, Nijholt LJ, Meloen RH, et al. (1998) Selection of recombinant, library-derived antibody fragments against p24 for human immunodeficiency virus type 1 diagnostics. Clin Diagn Lab Immunol 5(5): 636–44.
[81]  Pancera M, Wyatt R (2005) Selective recognition of oligomeric HIV-1 primary isolate envelope glycoproteins by potently neutralizing ligands requires efficient precursor cleavage. Virology 332(1): 145–56. doi: 10.1016/j.virol.2004.10.042
[82]  Derdeyn CA, Decker JM, Sfakianos JN, Wu X, O'Brien WA, et al. (2000) Sensitivity of human immunodeficiency virus type 1 to the fusion inhibitor T-20 is modulated by coreceptor specificity defined by the V3 loop of gp120. J Virol 74(18): 8358–67. doi: 10.1128/jvi.74.18.8358-8367.2000
[83]  Wei X, Decker JM, Liu H, Zhang Z, Arani RB, et al. (2002) Emergence of resistant human immunodeficiency virus type 1 in patients receiving fusion inhibitor (T-20) monotherapy. Antimicrob Agents Chemother 46(6): 1896–905. doi: 10.1128/aac.46.6.1896-1905.2002
[84]  Li M, Gao F, Mascola JR, Stamatatos L, Polonis VR, et al. (2005) Human immunodeficiency virus type 1 env clones from acute and early subtype B infections for standardized assessments of vaccine-elicited neutralizing antibodies. J Virol 79: 10108–25. doi: 10.1128/jvi.79.16.10108-10125.2005
[85]  Langedijk JP, Brandenburg AH, Middel WG, Osterhaus A, Meloen RH, et al. (1997) A subtype-specific peptide-based enzyme immunoassay for detection of antibodies to the G protein of human respiratory syncytial virus is more sensitive than routine serological tests. J Clin Microbiol 35(7): 1656–60.
[86]  Slootstra JW, Puijk WC, Ligtvoet GJ, Langeveld JP, Meloen RH (1996) Structural aspects of antibody-antigen interaction revealed through small random peptide libraries. Mol Divers 1(2): 87–96. doi: 10.1007/bf01721323
[87]  Battye TG, Kontogiannis L, Johnson O, Powell HR, Leslie AG (2011) iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr D Biol Crystallogr 67(Pt 4): 271–81. doi: 10.1107/s0907444910048675
[88]  Evans P (2006) Scaling and assessment of data quality. Acta Crystallogr D Biol Crystallogr 62(Pt 1): 72–82. doi: 10.1107/s0907444905036693
[89]  McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, et al. (2007) Phaser crystallographic software. J Appl Crystallogr 40(Pt 4): 658–674. doi: 10.1107/s0021889807021206
[90]  Perrakis A, Morris R, Lamzin VS (1999) Automated protein model building combined with iterative structure refinement. Nat Struct Biol 6: 458–463. doi: 10.1038/8263
[91]  Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60: 2126–2132. doi: 10.1107/s0907444904019158
[92]  Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr; 53: : 240–255.
[93]  Favier A, Brutscher B (2010) Recovering lost magnetization: polarization enhancement in biomolecular NMR. J Biomol NMR 49(1): 9–15. doi: 10.1007/s10858-010-9461-5
[94]  Delaglio F, Grzesiek S, Vuister GW, Zhu G, et al. (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6(3): 277–93. doi: 10.1007/bf00197809
[95]  Vranken WF, Boucher W, Stevens TJ, Fogh RH, Pajon A, et al. (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59(4): 687–96. doi: 10.1002/prot.20449
[96]  Markley JL, Bax A, Arata Y, Hilbers CW, Kaptein R, et al. (1998) Recommendations for the presentation of NMR structures of proteins and nucleic acids. IUPAC-IUBMB-IUPAB Inter-Union Task Group on the Standardization of Data Bases of Protein and Nucleic Acid Structures Determined by NMR Spectroscopy. J Biomol NMR 12(1): 1–23. doi: 10.1046/j.1432-1327.1998.2560001.x
[97]  de Vries SJ, van Dijk M, Bonvin AM (2010) The HADDOCK web server for data-driven biomolecular docking. Nat Protoc 5(5): 883–97. doi: 10.1038/nprot.2010.32
[98]  Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, et al. (1998) Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54(Pt 5): 905–21. doi: 10.1107/s0907444998003254
[99]  Krzeminski M, Loth K, Boelens R, Bonvin AM (2010) SAMPLEX: automatic mapping of perturbed and unperturbed regions of proteins and complexes. BMC Bioinformatics 11: 51. doi: 10.1186/1471-2105-11-51
[100]  Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44(4): 213–23. doi: 10.1007/s10858-009-9333-z
[101]  Fernandez-Recio J, Totrov M, Abagyan R (2004) Identification of protein-protein interaction sites from docking energy landscapes. J Mol Biol 335(3): 843–65. doi: 10.1016/j.jmb.2003.10.069
[102]  Brugger B, Glass B, Haberkant P, Leibrecht I, Wieland FT, et al. (2006) The HIV lipidome: a raft with an unusual composition. Proc Natl Acad Sci U S A 103(8):2641–6. doi: 10.1073/pnas.0511136103
[103]  Langedijk JP, Zekveld MJ, Ruiter M, Corti D, Back JW (2011) Helical peptide arrays for lead identification and interaction site mapping. Anal Biochem 417(1): 149–55. doi: 10.1016/j.ab.2011.06.002
[104]  de Rosny E, Vassell R, Jiang S, Kunert R, Weiss CD (2004) Binding of the 2F5 monoclonal antibody to native and fusion-intermediate forms of human immunodeficiency virus type 1 gp41: implications for fusion-inducing conformational changes. J Virol 78(5): 2627–31. doi: 10.1128/jvi.78.5.2627-2631.2004
[105]  Dimitrov AS, Jacobs A, Finnegan CM, Stiegler G, Katinger H, Blumenthal R (2007) Exposure of the membrane-proximal external region of HIV-1 gp41 in the course of HIV-1 envelope glycoprotein-mediated fusion. Biochemistry 46(5): 1398–401. doi: 10.1021/bi062245f
[106]  Crooks ET, Tong T, Osawa K, Binley JM (2011) Enzyme digests eliminate nonfunctional Env from HIV-1 particle surfaces, leaving native Env trimers intact and viral infectivity unaffected. J Virol 85(12): 5825–39. doi: 10.1128/jvi.00154-11
[107]  Karlsson Hedestam GB, Fouchier RA, Phogat S, Burton DR, Sodroski J, et al. (2008) The challenges of eliciting neutralizing antibodies to HIV-1 and to influenza virus. Nat Rev Microbiol 6(2): 143–55. doi: 10.1038/nrmicro1819
[108]  Frey G, Chen J, Rits-Volloch S, Freeman MM, Zolla-Pazner S, et al. (2010) Distinct conformational states of HIV-1 gp41 are recognized by neutralizing and non-neutralizing antibodies. Nat Struct Mol Biol 17(12): 1486–91. doi: 10.1038/nsmb.1950
[109]  Mouquet H, Warncke M, Scheid JF, Seaman MS, Nussenzweig MC (2012) Enhanced HIV-1 neutralization by antibody heteroligation. Proc Natl Acad Sci U S A 109(3): 875–80. doi: 10.1073/pnas.1120059109
[110]  Alam SM, McAdams M, Boren D, Rak M, Scearce RM, Gao F, Camacho ZT, et al. (2007) The role of antibody polyspecificity and lipid reactivity in binding of broadly neutralizing anti-HIV-1 envelope human monoclonal antibodies 2F5 and 4E10 to glycoprotein 41 membrane proximal envelope epitopes. J Immunol 178(7): 4424–35. doi: 10.4049/jimmunol.178.7.4424
[111]  Sanchez-Martinez S, Lorizate M, Katinger H, Kunert R, Nieva JL (2006) Membrane association and epitope recognition by HIV-1 neutralizing anti-gp41 2F5 and 4E10 antibodies. AIDS Res Hum Retroviruses 22(10): 998–1006. doi: 10.1089/aid.2006.22.998
[112]  Song L, Sun ZY, Coleman KE, Zwick MB, Gach JS, et al. (2009) Broadly neutralizing anti-HIV-1 antibodies disrupt a hinge-related function of gp41 at the membrane interface. Proc Natl Acad Sci U S A 106(22): 9057–62. doi: 10.1073/pnas.0901474106
[113]  Zhou T, Georgiev I, Wu X, Yang ZY, Dai K, et al. (2010) Structural Basis for Broad and Potent Neutralization of HIV-1 by Antibody VRC01. Science 329(5993): 811–7. doi: 10.1126/science.1192819
[114]  Nicely NI, Dennison SM, Spicer L, Scearce RM, Kelsoe G, et al. (2010) Crystal structure of a non-neutralizing antibody to the HIV-1 gp41 membrane-proximal external region. Nat Struct Mol Biol 17(12): 1492–4. doi: 10.1038/nsmb.1944
[115]  Timmerman P, Beld J, Puijk WC, Meloen RH (2005) Rapid and quantitative cyclization of multiple peptide loops onto synthetic scaffolds for structural mimicry of protein surfaces. Chembiochem 6(5): 821–4. doi: 10.1002/cbic.200400374
[116]  Mascola JR, D'Souza P, Gilbert P, Hahn BH, Haigwood NL, et al. (2005) Recommendations for the design and use of standard virus panels to assess neutralizing antibody responses elicited by candidate human immunodeficiency virus type 1 vaccines. J Virol 79(16): 10103–7. doi: 10.1128/jvi.79.16.10103-10107.2005

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133