[1] | Kimberlin DW, Whitley RJ (2005) Neonatal herpes: what have we learned. Semin Pediatr Infect Dis 16: 7–16. doi: 10.1053/j.spid.2004.09.006
|
[2] | Frey TK (1997) Neurological aspects of rubella virus infection. Intervirology 40: 167–175. doi: 10.1159/000150543
|
[3] | Miller E, Cradock-Watson JE, Pollock TM (1982) Consequences of confirmed maternal rubella at successive stages of pregnancy. Lancet 2: 781–784. doi: 10.1016/s0140-6736(82)92677-0
|
[4] | Bonthius DJ, Perlman S (2007) Congenital viral infections of the brain: lessons learned from lymphocytic choriomeningitis virus in the neonatal rat. PLoS Pathog 3: e149 doi:10.1371/journal.ppat.0030149.
|
[5] | Fowler KB, Stagno S, Pass RF, Britt WJ, Boll TJ, et al. (1992) The outcome of congenital cytomegalovirus infection in relation to maternal antibody status. N Engl J Med 326: 663–667. doi: 10.1056/nejm199203053261003
|
[6] | Britt W (2010) Cytomegalovirus. In: Remington JS, Klein JO, Wilson C, Nizet V, Maldonado YA, editors. Infectious Diseases of the Fetus and Newborn Infant. 7th ed. Philadelphia: Elsevier. pp. 706–756.
|
[7] | Alford C (1983) Rubella. In: Remington JS, Klein JO, Wilson C, Nizet V, Maldonado YA, editors. Infectious Diseases of the Fetus and Newborn Infant. Philadelphia: W.B. Saunders. pp. 69–103.
|
[8] | Fazakerley JK (2001) Neurovirology and Developmental Neurobiology. In: Michael J. Buchmeier ILC, editor. Advances in Virsu Research. Waltham: Academic Press. pp. 73–124.
|
[9] | Huleihel M, Golan H, Hallak M (2004) Intrauterine infection/inflammation during pregnancy and offspring brain damages: possible mechanisms involved. Reprod Biol Endocrinol 2: 17.
|
[10] | Asensio VCalLC (2001) Chemokines and Viral Diseases of the CNS. In: Michael J. Buchmeier ILC, editor. Advances in virus research. Waltham: Academic Press. pp. 127–173.
|
[11] | Burd I, Balakrishnan B, Kannan S (2012) Models of fetal brain injury, intrauterine inflammation, and preterm birth. Am J Reprod Immunol 67: 287–294. doi: 10.1111/j.1600-0897.2012.01110.x
|
[12] | Conrady CD, Drevets DA, Carr DJ (2010) Herpes simplex type I (HSV-1) infection of the nervous system: is an immune response a good thing? J Neuroimmunol 220: 1–9. doi: 10.1016/j.jneuroim.2009.09.013
|
[13] | Herden C, Schluesener HJ, Richt JA (2005) Expression of allograft inflammatory factor-1 and haeme oxygenase-1 in brains of rats infected with the neurotropic Borna disease virus. Neuropathol Appl Neurobiol 31: 512–521. doi: 10.1111/j.1365-2990.2005.00668.x
|
[14] | van den Pol AN (2009) Viral infection leading to brain dysfunction: more prevalent than appreciated? Neuron 64: 17–20. doi: 10.1016/j.neuron.2009.09.023
|
[15] | Hofer M, Hausmann J, Staeheli P, Pagenstecher A (2004) Cerebral expression of interleukin-12 induces neurological disease via differential pathways and recruits antigen-specific T cells in virus-infected mice. Am J Pathol 165: 949–958. doi: 10.1016/s0002-9440(10)63356-1
|
[16] | Lin AA, Tripathi PK, Sholl A, Jordan MB, Hildeman DA (2009) Gamma interferon signaling in macrophage lineage cells regulates central nervous system inflammation and chemokine production. J Virol 83: 8604–8615. doi: 10.1128/jvi.02477-08
|
[17] | Morimoto K, Hooper DC, Bornhorst A, Corisdeo S, Bette M, et al. (1996) Intrinsic responses to Borna disease virus infection of the central nervous system. Proc Natl Acad Sci U S A 93: 13345–13350. doi: 10.1073/pnas.93.23.13345
|
[18] | Sauder C, de la Torre JC (1999) Cytokine expression in the rat central nervous system following perinatal Borna disease virus infection. J Neuroimmunol 96: 29–45. doi: 10.1016/s0165-5728(98)00272-0
|
[19] | Schoneboom BA, Catlin KM, Marty AM, Grieder FB (2000) Inflammation is a component of neurodegeneration in response to Venezuelan equine encephalitis virus infection in mice. J Neuroimmunol 109: 132–146. doi: 10.1016/s0165-5728(00)00290-3
|
[20] | Storm P, Bartholdy C, Sorensen MR, Christensen JP, Thomsen AR (2006) Perforin-deficient CD8+ T cells mediate fatal lymphocytic choriomeningitis despite impaired cytokine production. J Virol 80: 1222–1230. doi: 10.1128/jvi.80.3.1222-1230.2006
|
[21] | Amor S, Scallan MF, Morris MM, Dyson H, Fazakerley JK (1996) Role of immune responses in protection and pathogenesis during Semliki Forest virus encephalitis. J Gen Virol 77 (Pt 2) 281–291. doi: 10.1099/0022-1317-77-2-281
|
[22] | Subak-Sharpe I, Dyson H, Fazakerley J (1993) In vivo depletion of CD8+ T cells prevents lesions of demyelination in Semliki Forest virus infection. J Virol 67: 7629–7633.
|
[23] | Lim SM, Koraka P, Osterhaus AD, Martina BE (2011) West Nile virus: immunity and pathogenesis. Viruses 3: 811–828. doi: 10.3390/v3060811
|
[24] | Griffin DE (2010) Recovery from viral encephalomyelitis: immune-mediated noncytolytic virus clearance from neurons. Immunol Res 47: 123–133. doi: 10.1007/s12026-009-8143-4
|
[25] | Griffin DE (2003) Immune responses to RNA-virus infections of the CNS. Nature Reviews Immunology 3: 493–502. doi: 10.1038/nri1105
|
[26] | Samuel MA, Diamond MS (2006) Pathogenesis of West Nile Virus infection: a balance between virulence, innate and adaptive immunity, and viral evasion. J Virol 80: 9349–9360. doi: 10.1128/jvi.01122-06
|
[27] | Diamond MS, Shrestha B, Marri A, Mahan D, Engle M (2003) B cells and antibody play critical roles in the immediate defense of disseminated infection by West Nile encephalitis virus. J Virol 77: 2578–2586. doi: 10.1128/jvi.77.4.2578-2586.2003
|
[28] | Binder GK, Griffin DE (2003) Immune-mediated clearance of virus from the central nervous system. Microbes & Infection 5: 439–448. doi: 10.1016/s1286-4579(03)00047-9
|
[29] | Binder GK, Griffin DE (2001) Interferon-gamma-mediated site-specific clearance of alphavirus from CNS neurons. Science 293: 303–306. doi: 10.1126/science.1059742
|
[30] | Oldstone MB, Dixon FJ (1971) Lymphocytic choriomeningitis: an animal model of persistent viral infection with cellular injury mediated by host antiviral immune response. Res Publ Assoc Res Nerv Ment Dis 49: 356–364.
|
[31] | Geiger KD, Nash TC, Sawyer S, Krahl T, Patstone G, et al. (1997) Interferon-gamma protects against herpes simplex virus type 1-mediated neuronal death. Virology 238: 189–197. doi: 10.1006/viro.1997.8841
|
[32] | Lundberg P, Welander PV, Edwards CK 3rd, van Rooijen N, Cantin E (2007) Tumor necrosis factor (TNF) protects resistant C57BL/6 mice against herpes simplex virus-induced encephalitis independently of signaling via TNF receptor 1 or 2. J Virol 81: 1451–1460. doi: 10.1128/jvi.02243-06
|
[33] | Pasieka TJ, Cilloniz C, Carter VS, Rosato P, Katze MG, et al. (2011) Functional genomics reveals an essential and specific role for Stat1 in protection of the central nervous system following herpes simplex virus corneal infection. J Virol 85: 12972–12981. doi: 10.1128/jvi.06032-11
|
[34] | Guo YJ, Zhao L, Li XF, Mei YW, Zhang SL, et al. (2010) Effect of Corilagin on anti-inflammation in HSV-1 encephalitis and HSV-1 infected microglias. Eur J Pharmacol 635: 79–86. doi: 10.1016/j.ejphar.2010.02.049
|
[35] | Lundberg P, Ramakrishna C, Brown J, Tyszka JM, Hamamura M, et al. (2008) The immune response to herpes simplex virus type 1 infection in susceptible mice is a major cause of central nervous system pathology resulting in fatal encephalitis. J Virol 82: 7078–7088. doi: 10.1128/jvi.00619-08
|
[36] | McGavern DB, Homann D, Oldstone MB (2002) T cells in the central nervous system: the delicate balance between viral clearance and disease. J Infect Dis 186 Suppl 2: S145–151. doi: 10.1086/344264
|
[37] | Monjan AA, Cole GA, Nathanson N (1974) Pathogenesis of cerebellar hypoplasia produced by lymphocytic choriomeningitis virus infection of neonatal rats: protective effect of immunosuppression with anti-lymphoid serum. Infect Immun 10: 499–502.
|
[38] | Burdeinick-Kerr R, Wind J, Griffin DE (2007) Synergistic roles of antibody and interferon in noncytolytic clearance of Sindbis virus from different regions of the central nervous system. J Virol 81: 5628–5636. doi: 10.1128/jvi.01152-06
|
[39] | Keller BC, Fredericksen BL, Samuel MA, Mock RE, Mason PW, et al. (2006) Resistance to alpha/beta interferon is a determinant of West Nile virus replication fitness and virulence. J Virol 80: 9424–9434. doi: 10.1128/jvi.00768-06
|
[40] | Mateo R, Xiao SY, Guzman H, Lei H, Da Rosa AP, et al. (2006) Effects of immunosuppression on West Nile virus infection in hamsters. Am J Trop Med Hyg 75: 356–362.
|
[41] | Shrestha B, Wang T, Samuel MA, Whitby K, Craft J, et al. (2006) Gamma interferon plays a crucial early antiviral role in protection against West Nile virus infection. J Virol 80: 5338–5348. doi: 10.1128/jvi.00274-06
|
[42] | Klein RS, Diamond MS (2008) Immunological headgear: antiviral immune responses protect against neuroinvasive West Nile virus. Trends Mol Med 14: 286–294. doi: 10.1016/j.molmed.2008.05.004
|
[43] | Metcalf TU, Griffin DE (2011) Alphavirus-induced encephalomyelitis: antibody-secreting cells and viral clearance from the nervous system. J Virol 85: 11490–11501. doi: 10.1128/jvi.05379-11
|
[44] | Kimura T, Griffin DE (2000) The role of CD8(+) T cells and major histocompatibility complex class I expression in the central nervous system of mice infected with neurovirulent Sindbis virus. J Virol 74: 6117–6125. doi: 10.1128/jvi.74.13.6117-6125.2000
|
[45] | Herman M, Ciancanelli M, Ou YH, Lorenzo L, Klaudel-Dreszler M, et al. (2012) Heterozygous TBK1 mutations impair TLR3 immunity and underlie herpes simplex encephalitis of childhood. J Exp Med 209 (9) 1567–82. doi: 10.1084/jem.20111316
|
[46] | Sergerie Y, Rivest S, Boivin G (2007) Tumor necrosis factor-alpha and interleukin-1 beta play a critical role in the resistance against lethal herpes simplex virus encephalitis. J Infect Dis 196: 853–860. doi: 10.1086/520094
|
[47] | Lundberg P, Openshaw H, Wang M, Yang HJ, Cantin E (2007) Effects of CXCR3 signaling on development of fatal encephalitis and corneal and periocular skin disease in HSV-infected mice are mouse-strain dependent. Invest Ophthalmol Vis Sci 48: 4162–4170. doi: 10.1167/iovs.07-0261
|
[48] | Akwa Y, Hassett DE, Eloranta ML, Sandberg K, Masliah E, et al. (1998) Transgenic expression of IFN-alpha in the central nervous system of mice protects against lethal neurotropic viral infection but induces inflammation and neurodegeneration. J Immunol 161: 5016–5026.
|
[49] | Kramer K, Schaudien D, Eisel UL, Herzog S, Richt JA, et al. (2012) TNF-Overexpression in Borna Disease Virus-Infected Mouse Brains Triggers Inflammatory Reaction and Epileptic Seizures. PLoS One 7: e41476 doi:10.1371/journal.pone.0041476.
|
[50] | Kremer M, Henn A, Kolb C, Basler M, Moebius J, et al. (2010) Reduced immunoproteasome formation and accumulation of immunoproteasomal precursors in the brains of lymphocytic choriomeningitis virus-infected mice. J Immunol 185: 5549–5560. doi: 10.4049/jimmunol.1001517
|
[51] | Zhang SY, Jouanguy E, Ugolini S, Smahi A, Elain G, et al. (2007) TLR3 deficiency in patients with herpes simplex encephalitis. Science 317: 1522–1527. doi: 10.1126/science.1139522
|
[52] | Boppana SB, Ross SA, Shimamura M, Palmer AL, Ahmed A, et al. (2011) Saliva polymerase-chain-reaction assay for cytomegalovirus screening in newborns. N Engl J Med 364: 2111–2118. doi: 10.1056/nejmoa1006561
|
[53] | Koontz T, Bralic M, Tomac J, Pernjak-Pugel E, Bantug G, et al. (2008) Altered development of the brain after focal herpesvirus infection of the central nervous system. J Exp Med 205: 423–435. doi: 10.1084/jem.20071489
|
[54] | Pass RF, Stagno S, Myers GJ, Alford CA (1980) Outcome of symptomatic congenital cytomegalovirus infection: results of long-term longitudinal follow-up. Pediatrics 66: 758–762.
|
[55] | Becroft DM (1981) Prenatal cytomegalovirus infection: epidemiology, pathology and pathogenesis. Perspect Pediatr Pathol 6: 203–241.
|
[56] | Bale JF Jr, O'Neil ME, Hogan RN, Kern ER (1984) Experimental murine cytomegalovirus infection of ocular structures. Arch Ophthalmol 102: 1214–1219. doi: 10.1001/archopht.1984.01040030984032
|
[57] | Perlman JM, Argyle C (1992) Lethal cytomegalovirus infection in preterm infants: clinical, radiological, and neuropathological findings. Ann Neurol 31: 64–68. doi: 10.1002/ana.410310112
|
[58] | Dahle AJ, Fowler KB, Wright JD, Boppana SB, Britt WJ, et al. (2000) Longitudinal investigation of hearing disorders in children with congenital cytomegalovirus. J Am Acad Audiol 11: 283–290.
|
[59] | Bale JF Jr, Murph JR (1997) Infections of the central nervous system in the newborn. Clinics in Perinatology 24: 787–806.
|
[60] | Gabrielli L, Bonasoni MP, Lazzarotto T, Lega S, Santini D, et al. (2009) Histological findings in foetuses congenitally infected by cytomegalovirus. J Clin Virol 46 Suppl 4: S16–21. doi: 10.1016/j.jcv.2009.09.026
|
[61] | Teissier N, Delezoide AL, Mas AE, Khung-Savatovsky S, Bessieres B, et al. (2011) Inner ear lesions in congenital cytomegalovirus infection of human fetuses. Acta Neuropathol 122: 763–774. doi: 10.1007/s00401-011-0895-y
|
[62] | Bantug GR, Cekinovic D, Bradford R, Koontz T, Jonjic S, et al. (2008) CD8+ T lymphocytes control murine cytomegalovirus replication in the central nervous system of newborn animals. J Immunol 181: 2111–2123. doi: 10.4049/jimmunol.181.3.2111
|
[63] | Carson MJ, Reilly CR, Sutcliffe JG, Lo D (1998) Mature microglia resemble immature antigen-presenting cells. Glia 22: 72–85. doi: 10.1002/(sici)1098-1136(199801)22:1<72::aid-glia7>3.0.co;2-a
|
[64] | Ito D, Imai Y, Ohsawa K, Nakajima K, Fukuuchi Y, et al. (1998) Microglia-specific localisation of a novel calcium binding protein, Iba1. Brain Res Mol Brain Res 57: 1–9. doi: 10.1016/s0169-328x(98)00040-0
|
[65] | Mori I, Goshima F, Koshizuka T, Imai Y, Kohsaka S, et al. (2003) Iba1-expressing microglia respond to herpes simplex virus infection in the mouse trigeminal ganglion. Brain Res Mol Brain Res 120: 52–56. doi: 10.1016/j.molbrainres.2003.10.003
|
[66] | Ruzek MC, Pearce BD, Miller AH, Biron CA (1999) Endogenous glucocorticoids protect against cytokine-mediated lethality during viral infection. J Immunol 162: 3527–3533.
|
[67] | Silverman MN, Macdougall MG, Hu F, Pace TW, Raison CL, et al. (2007) Endogenous glucocorticoids protect against TNF-alpha-induced increases in anxiety-like behavior in virally infected mice. Mol Psychiatry 12: 408–417. doi: 10.1038/sj.mp.4001921
|
[68] | Clase AC, Banfield BW (2003) Corticosteroids are unable to protect against pseudorabies virus-induced tissue damage in the developing brain. J Virol 77: 4979–4984. doi: 10.1128/jvi.77.8.4979-4984.2003
|
[69] | Fitch MT, van de Beek D (2008) Drug Insight: steroids in CNS infectious diseases–new indications for an old therapy. Nat Clin Pract Neurol 4: 97–104. doi: 10.1038/ncpneuro0713
|
[70] | Girgis NI, Farid Z, Kilpatrick ME, Sultan Y, Mikhail IA (1991) Dexamethasone adjunctive treatment for tuberculous meningitis. Pediatr Infect Dis J 10: 179–183. doi: 10.1097/00006454-199103000-00002
|
[71] | McIntyre PB, Berkey CS, King SM, Schaad UB, Kilpi T, et al. (1997) Dexamethasone as adjunctive therapy in bacterial meningitis. A meta-analysis of randomized clinical trials since 1988. Jama 278: 925–931. doi: 10.1001/jama.278.11.925
|
[72] | Yis U, Kurul SH, Cakmakci H, Dirik E (2008) Acute cerebellitis with cerebellar swelling successfully treated with standard dexamethasone treatment. Cerebellum 7: 430–432. doi: 10.1007/s12311-008-0045-9
|
[73] | Kato K (1990) Novel GABAA receptor alpha subunit is expressed only in cerebellar granule cells. J Mol Biol 214: 619–624. doi: 10.1016/0022-2836(90)90276-r
|
[74] | Kuhar SG, Feng L, Vidan S, Ross ME, Hatten ME, et al. (1993) Changing patterns of gene expression define four stages of cerebellar granule neuron differentiation. Development 117: 97–104.
|
[75] | Paglini G, Caceres A (2001) The role of the Cdk5–p35 kinase in neuronal development. Eur J Biochem 268: 1528–1533. doi: 10.1046/j.1432-1033.2001.02023.x
|
[76] | Aruga J, Inoue T, Hoshino J, Mikoshiba K (2002) Zic2 controls cerebellar development in cooperation with Zic1. J Neurosci 22: 218–225.
|
[77] | Heine VM, Priller M, Ling J, Rowitch DH, Schuller U (2010) Dexamethasone destabilizes Nmyc to inhibit the growth of hedgehog-associated medulloblastoma. Cancer Res 70: 5220–5225. doi: 10.1158/0008-5472.can-10-0554
|
[78] | Heine VM, Rowitch DH (2009) Hedgehog signaling has a protective effect in glucocorticoid-induced mouse neonatal brain injury through an 11betaHSD2-dependent mechanism. J Clin Invest 119: 267–277. doi: 10.1172/jci36376
|
[79] | Holmes MC, Sangra M, French KL, Whittle IR, Paterson J, et al. (2006) 11beta-Hydroxysteroid dehydrogenase type 2 protects the neonatal cerebellum from deleterious effects of glucocorticoids. Neuroscience 137: 865–873. doi: 10.1016/j.neuroscience.2005.09.037
|
[80] | Diaz R, Brown RW, Seckl JR (1998) Distinct ontogeny of glucocorticoid and mineralocorticoid receptor and 11beta-hydroxysteroid dehydrogenase types I and II mRNAs in the fetal rat brain suggest a complex control of glucocorticoid actions. J Neurosci 18: 2570–2580.
|
[81] | Heine VM, Griveau A, Chapin C, Ballard PL, Chen JK, et al. (2011) A small-molecule smoothened agonist prevents glucocorticoid-induced neonatal cerebellar injury. Sci Transl Med 3: 105ra104. doi: 10.1126/scitranslmed.3002731
|
[82] | Noguchi KK, Lau K, Smith DJ, Swiney BS, Farber NB (2011) Glucocorticoid receptor stimulation and the regulation of neonatal cerebellar neural progenitor cell apoptosis. Neurobiol Dis 43: 356–363. doi: 10.1016/j.nbd.2011.04.004
|
[83] | Agin H, Apa H, Unalp A, Kayserili E (2010) Acute disseminated encephalomyelitis associated with enteroviral infection. Neurosciences (Riyadh) 15: 46–48.
|
[84] | Chen SD, Wen ZH, Chang WK, Chan KH, Tsou MT, et al. (2008) Acute effect of methylprednisolone on the brain in a rat model of allergic asthma. Neurosci Lett 440: 87–91. doi: 10.1016/j.neulet.2008.03.092
|
[85] | Mabon PJ, Weaver LC, Dekaban GA (1999) Cyclosporin A reduces the inflammatory response to a multi-mutant herpes simplex virus type-1 leading to improved transgene expression in sympathetic preganglionic neurons in hamsters. J Neurovirol 5: 268–279. doi: 10.3109/13550289909015813
|
[86] | Saji N, Taniguchi K, Tadano M, Shimizu H, Kawarai T, et al. (2007) [A case of brainstem encephalitis following multiple cranial neuropathy in a hepatocellular carcinoma patient–association with cytomegalovirus and varicella-zoster virus infection]. Brain Nerve 59: 1273–1279.
|
[87] | Schimmer BP (1996) Adrenocorticotropic hormone: adrenocortical steroids and their synthetic analogs: inhibitors of the synthesis and actions of adrenocortical hormones. Goodman and Gilman's the pharmacological basis of therapeutics. 9th ed. New York: McGraw Hill. pp. 1459–1485.
|
[88] | Meikle AW, Tyler FH (1977) Potency and duration of action of glucocorticoids. Effects of hydrocortisone, prednisone and dexamethasone on human pituitary-adrenal function. Am J Med 63: 200–207. doi: 10.1016/0002-9343(77)90253-4
|
[89] | Altman J (1972) Postnatal development of the cerebellar cortex in the rat. I. The external germinal layer and the transitional molecular layer. J Comp Neurol 145: 353–397. doi: 10.1002/cne.901450305
|
[90] | Espinosa JS, Luo L (2008) Timing neurogenesis and differentiation: insights from quantitative clonal analyses of cerebellar granule cells. J Neurosci 28: 2301–2312. doi: 10.1523/jneurosci.5157-07.2008
|
[91] | Hatten ME, Heintz N (1995) Mechanisms of neural patterning and specification in the developing cerebellum. Annu Rev Neurosci 18: 385–408. doi: 10.1146/annurev.ne.18.030195.002125
|
[92] | Satyanarayana A, Kaldis P (2009) Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms. Oncogene 28: 2925–2939. doi: 10.1038/onc.2009.170
|
[93] | Plesca D, Crosby ME, Gupta D, Almasan A (2007) E2F4 function in G2: maintaining G2-arrest to prevent mitotic entry with damaged DNA. Cell Cycle 6: 1147–1152. doi: 10.4161/cc.6.10.4259
|
[94] | Takizawa CG, Morgan DO (2000) Control of mitosis by changes in the subcellular location of cyclin-B1-Cdk1 and Cdc25C. Curr Opin Cell Biol 12: 658–665. doi: 10.1016/s0955-0674(00)00149-6
|
[95] | Fujita S (1967) Quantitative analysis of cell proliferation and differentiation in the cortex of the postnatal mouse cerebellum. J Cell Biol 32: 277–287. doi: 10.1083/jcb.32.2.277
|
[96] | Fujita S, Shimada M, Nakamura T (1966) H3-thymidine autoradiographic studies on the cell proliferation and differentiation in the external and the internal granular layers of the mouse cerebellum. J Comp Neurol 128: 191–208. doi: 10.1002/cne.901280206
|
[97] | Chizhikov V, Millen KJ (2003) Development and malformations of the cerebellum in mice. Mol Genet Metab 80: 54–65. doi: 10.1016/j.ymgme.2003.08.019
|
[98] | Miale IL, Sidman RL (1961) An autoradiographic analysis of histogenesis in the mouse cerebellum. Exp Neurol 4: 277–296. doi: 10.1016/0014-4886(61)90055-3
|
[99] | Rakic P (1971) Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electronmicroscopic study in Macacus Rhesus. J Comp Neurol 141: 283–312. doi: 10.1002/cne.901410303
|
[100] | Rakic P, Sidman RL (1973) Organization of cerebellar cortex secondary to deficit of granule cells in weaver mutant mice. J Comp Neurol 152: 133–161. doi: 10.1002/cne.901520203
|
[101] | Wyrwoll CS, Holmes MC, Seckl JR (2011) 11beta-hydroxysteroid dehydrogenases and the brain: from zero to hero, a decade of progress. Front Neuroendocrinol 32: 265–286. doi: 10.1016/j.yfrne.2010.12.001
|
[102] | Meyding-Lamade UK, Oberlinner C, Rau PR, Seyfer S, Heiland S, et al. (2003) Experimental herpes simplex virus encephalitis: a combination therapy of acyclovir and glucocorticoids reduces long-term magnetic resonance imaging abnormalities. J Neurovirol 9: 118–125. doi: 10.1080/13550280390173373
|
[103] | Thompson KA, Blessing WW, Wesselingh SL (2000) Herpes simplex replication and dissemination is not increased by corticosteroid treatment in a rat model of focal Herpes encephalitis. J Neurovirol 6: 25–32. doi: 10.3109/13550280009006379
|
[104] | Liberman AC, Druker J, Refojo D, Holsboer F, Arzt E (2009) Glucocorticoids inhibit GATA-3 phosphorylation and activity in T cells. Faseb J 23: 1558–1571. doi: 10.1096/fj.08-121236
|
[105] | Parikh NA, Lasky RE, Kennedy KA, Moya FR, Hochhauser L, et al. (2007) Postnatal dexamethasone therapy and cerebral tissue volumes in extremely low birth weight infants. Pediatrics 119: 265–272. doi: 10.1542/peds.2006-1354
|
[106] | Tam EW, Chau V, Ferriero DM, Barkovich AJ, Poskitt KJ, et al. (2011) Preterm cerebellar growth impairment after postnatal exposure to glucocorticoids. Sci Transl Med 3: 105ra105. doi: 10.1126/scitranslmed.3002884
|
[107] | Choi Y, Borghesani PR, Chan JA, Segal RA (2005) Migration from a mitogenic niche promotes cell-cycle exit. J Neurosci 25: 10437–10445. doi: 10.1523/jneurosci.1559-05.2005
|
[108] | Corrales JD, Blaess S, Mahoney EM, Joyner AL (2006) The level of sonic hedgehog signaling regulates the complexity of cerebellar foliation. Development 133: 1811–1821. doi: 10.1242/dev.02351
|
[109] | Corrales JD, Rocco GL, Blaess S, Guo Q, Joyner AL (2004) Spatial pattern of sonic hedgehog signaling through Gli genes during cerebellum development. Development 131: 5581–5590. doi: 10.1242/dev.01438
|
[110] | Dahmane N, Ruiz i Altaba A (1999) Sonic hedgehog regulates the growth and patterning of the cerebellum. Development 126: 3089–3100.
|
[111] | Lewis PM, Gritli-Linde A, Smeyne R, Kottmann A, McMahon AP (2004) Sonic hedgehog signaling is required for expansion of granule neuron precursors and patterning of the mouse cerebellum. Dev Biol 270: 393–410. doi: 10.1016/j.ydbio.2004.03.007
|
[112] | Spassky N, Han YG, Aguilar A, Strehl L, Besse L, et al. (2008) Primary cilia are required for cerebellar development and Shh-dependent expansion of progenitor pool. Dev Biol 317: 246–259. doi: 10.1016/j.ydbio.2008.02.026
|
[113] | Wechsler-Reya RJ, Scott MP (1999) Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron 22: 103–114. doi: 10.1016/s0896-6273(00)80682-0
|
[114] | Kenney AM, Cole MD, Rowitch DH (2003) Nmyc upregulation by sonic hedgehog signaling promotes proliferation in developing cerebellar granule neuron precursors. Development 130: 15–28. doi: 10.1242/dev.00182
|
[115] | Knoepfler PS, Cheng PF, Eisenman RN (2002) N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation. Genes Dev 16: 2699–2712. doi: 10.1101/gad.1021202
|
[116] | Knoepfler PS, Kenney AM (2006) Neural precursor cycling at sonic speed: N-Myc pedals, GSK-3 brakes. Cell Cycle 5: 47–52. doi: 10.4161/cc.5.1.2292
|
[117] | Oliver TG, Grasfeder LL, Carroll AL, Kaiser C, Gillingham CL, et al. (2003) Transcriptional profiling of the Sonic hedgehog response: a critical role for N-myc in proliferation of neuronal precursors. Proc Natl Acad Sci U S A 100: 7331–7336. doi: 10.1073/pnas.0832317100
|
[118] | Goodrich LV, Johnson RL, Milenkovic L, McMahon JA, Scott MP (1996) Conservation of the hedgehog/patched signaling pathway from flies to mice: induction of a mouse patched gene by Hedgehog. Genes Dev 10: 301–312. doi: 10.1101/gad.10.3.301
|
[119] | Marigo V, Tabin CJ (1996) Regulation of patched by sonic hedgehog in the developing neural tube. Proc Natl Acad Sci U S A 93: 9346–9351. doi: 10.1073/pnas.93.18.9346
|
[120] | Amankulor NM, Hambardzumyan D, Pyonteck SM, Becher OJ, Joyce JA, et al. (2009) Sonic hedgehog pathway activation is induced by acute brain injury and regulated by injury-related inflammation. J Neurosci 29: 10299–10308. doi: 10.1523/jneurosci.2500-09.2009
|
[121] | Yamasaki A, Kameda C, Xu R, Tanaka H, Tasaka T, et al. (2010) Nuclear factor kappaB-activated monocytes contribute to pancreatic cancer progression through the production of Shh. Cancer Immunol Immunother 59: 675–686. doi: 10.1007/s00262-009-0783-7
|
[122] | Wang J, Lin W, Popko B, Campbell IL (2004) Inducible production of interferon-gamma in the developing brain causes cerebellar dysplasia with activation of the Sonic hedgehog pathway. Mol Cell Neurosci 27: 489–496. doi: 10.1016/j.mcn.2004.08.004
|
[123] | Sun L, Tian Z, Wang J (2010) A direct cross-talk between interferon-gamma and sonic hedgehog signaling that leads to the proliferation of neuronal precursor cells. Brain Behav Immun 24: 220–228. doi: 10.1016/j.bbi.2009.09.016
|
[124] | Wang J, Pham-Mitchell N, Schindler C, Campbell IL (2003) Dysregulated Sonic hedgehog signaling and medulloblastoma consequent to IFN-alpha-stimulated STAT2-independent production of IFN-gamma in the brain. J Clin Invest 112: 535–543. doi: 10.1172/jci18637
|
[125] | Asensio VC, Campbell IL (1999) Chemokines in the CNS: plurifunctional mediators in diverse states. Trends Neurosci 22: 504–512. doi: 10.1016/s0166-2236(99)01453-8
|
[126] | Mennicken F, Maki R, de Souza EB, Quirion R (1999) Chemokines and chemokine receptors in the CNS: a possible role in neuroinflammation and patterning. Trends Pharmacol Sci 20: 73–78. doi: 10.1016/s0165-6147(99)01308-5
|
[127] | Minami M, Satoh M (2000) [Chemokines as mediators for intercellular communication in the brain]. Nihon Yakurigaku Zasshi 115: 193–200. doi: 10.1254/fpj.115.193
|
[128] | Montgomery SL, Bowers WJ (2012) Tumor necrosis factor-alpha and the roles it plays in homeostatic and degenerative processes within the central nervous system. J Neuroimmune Pharmacol 7: 42–59. doi: 10.1007/s11481-011-9287-2
|
[129] | Arribas JR, Storch GA, Clifford DB, Tselis AC (1996) Cytomegalovirus encephalitis. Ann Intern Med 125: 577–587. doi: 10.7326/0003-4819-125-7-199610010-00008
|
[130] | Marques Dias MJ, Harmant-van Rijckevorsel G, Landrieu P, Lyon G (1984) Prenatal cytomegalovirus disease and cerebral microgyria: evidence for perfusion failure, not disturbance of histogenesis, as the major cause of fetal cytomegalovirus encephalopathy. Neuropediatrics 15: 18–24. doi: 10.1055/s-2008-1052334
|
[131] | de Vries LS, Gunardi H, Barth PG, Bok LA, Verboon-Maciolek MA, et al. (2004) The spectrum of cranial ultrasound and magnetic resonance imaging abnormalities in congenital cytomegalovirus infection. Neuropediatrics 35: 113–119. doi: 10.1055/s-2004-815833
|
[132] | Picone O, Simon I, Benachi A, Brunelle F, Sonigo P (2008) Comparison between ultrasound and magnetic resonance imaging in assessment of fetal cytomegalovirus infection. Prenat Diagn 28: 753–758. doi: 10.1002/pd.2037
|
[133] | Enders G, Daiminger A, Bader U, Exler S, Enders M (2011) Intrauterine transmission and clinical outcome of 248 pregnancies with primary cytomegalovirus infection in relation to gestational age. J Clin Virol 52: 244–246. doi: 10.1016/j.jcv.2011.07.005
|
[134] | Brune W, Hasan M, Krych M, Bubic I, Jonjic S, et al. (2001) Secreted virus-encoded proteins reflect murine cytomegalovirus productivity in organs. J Infect Dis 184: 1320–1324. doi: 10.1086/323993
|
[135] | Rasband WS (1997–2012) ImageJ. Bethesda: U. S. National Institutes of Health.
|