Human influenza infections exhibit a strong seasonal cycle in temperate regions. Recent laboratory and epidemiological evidence suggests that low specific humidity conditions facilitate the airborne survival and transmission of the influenza virus in temperate regions, resulting in annual winter epidemics. However, this relationship is unlikely to account for the epidemiology of influenza in tropical and subtropical regions where epidemics often occur during the rainy season or transmit year-round without a well-defined season. We assessed the role of specific humidity and other local climatic variables on influenza virus seasonality by modeling epidemiological and climatic information from 78 study sites sampled globally. We substantiated that there are two types of environmental conditions associated with seasonal influenza epidemics: “cold-dry” and “humid-rainy”. For sites where monthly average specific humidity or temperature decreases below thresholds of approximately 11–12 g/kg and 18–21°C during the year, influenza activity peaks during the cold-dry season (i.e., winter) when specific humidity and temperature are at minimal levels. For sites where specific humidity and temperature do not decrease below these thresholds, seasonal influenza activity is more likely to peak in months when average precipitation totals are maximal and greater than 150 mm per month. These findings provide a simple climate-based model rooted in empirical data that accounts for the diversity of seasonal influenza patterns observed across temperate, subtropical and tropical climates.
References
[1]
Simonsen L (1999) The global impact of influenza on morbidity and mortality. Vaccine 17: S3–10. doi: 10.1016/s0264-410x(99)00099-7
[2]
Lipsitch M, Viboud C (2009) Influenza seasonality: lifting the fog. Proc Nat Acad Sci 106: 3645–3646. doi: 10.1073/pnas.0900933106
[3]
Lofgren E, Fefferman NH, Naumov YN, Gorski J, Naumova EN (2007) Influenza seasonality: underlying causes and modeling theories. J Virol 81: 5429–5436. doi: 10.1128/jvi.01680-06
[4]
Tamerius JD, Nelson MI, Zhou SZ, Viboud C, Miller MA, et al. (2011) Global influenza seasonality: reconciling patterns across temperate and tropical regions. Environ Health Persp 119: 439–445. doi: 10.1289/ehp.1002383
[5]
Finkelman BS, Viboud C, Koelle K, Ferrari MJ, Bharti N, et al. (2007) Global patterns in seasonal activity of influenza A/H3N2, A/H1N1, and B from 1997 to 2005: viral coexistence and latitudinal gradients. PLoS ONE 2: e1296. doi: 10.1371/journal.pone.0001296
[6]
Viboud C, Bo?lle P, Pakdaman K, Carrat F, Valleron A, et al. (2004) Influenza epidemics in the United States, France, and Australia, 1972–1997. Emerg Infect Dis 10: 32–39. doi: 10.3201/eid1001.020705
[7]
Moura FEA (2010) Influenza in the tropics. Curr Opin Infect Dis 23: 415–420.
[8]
Rao BL, Banerjee K (1993) Influenza surveillance in Pune, India, 1978–90. B World Health Organ 71: 177–181.
[9]
Dapat C, Saito R, Kyaw Y, Naito M, Hasegawa G, et al. (2009) Epidemiology of human influenza A and B viruses in Myanmar from 2005 to 2007. Intervirology 52: 310–320. doi: 10.1159/000237738
[10]
Dosseh A, Ndiaye K, Spiegel A, Sagna M, Mathiot C (2000) Epidemiological and virological influenza survey in Dakar, Senegal: 1996–1998. Am J Trop Med Hyg 62: 639–643.
[11]
Moura FE, Perdig?o , Siqueira MM (2009) Seasonality of influenza in the tropics: a distinct pattern in northeastern Brazil. Am J Trop Med Hyg 81: 180–183.
[12]
Chiu SS, Chan KH, Chen H, Young BW, Lim W, et al. (2009) Virologically confirmed population-based burden of hospitalization caused by influenza A and B among children in Hong Kong. Clin Infect Dis 49(7): 1016–1021 doi:10.1086/605570.
[13]
Lee VJ, Yap J, Ong JBS, Chan KP, Lin RTP, et al. (2009) Influenza excess mortality from 1950–2000 in tropical Singapore. PLoS ONE 4(12): e8096 doi:10.1371/journal.pone.0008096.
[14]
Shaman J, Pitzer VE, Viboud C, Grenfell BT, Lipsitch M (2010) Absolute humidity and the seasonal onset of influenza in the continental United States. PLoS Biol 8: e1000316. doi: 10.1371/journal.pbio.1000316
[15]
Shaman J, Goldstein E, Lipsitch M (2011) Absolute humidity and pandemic versus epidemic influenza. Am J Epidemiol 173(2): 127–135 doi:10.1093/aje/kwq347.
[16]
Lowen AC, Mubareka S, Steel J, Palese P (2007) Influenza virus transmission is dependent on relative humidity and temperature. PLoS Pathog 3: 1470–1476. doi: 10.1371/journal.ppat.0030151
Cannell JJ, Vieth R, Umhau JC, Holick MF, Grant WB, et al. (2006) Epidemic influenza and vitamin D. Epidemiol Infect 134: 1129–1140. doi: 10.1017/s0950268806007175
[19]
Dowell SF (2001) Seasonal variation in host susceptibility and cycles of certain infectious diseases. Emerg Infect Dis 7: 369–374. doi: 10.3201/eid0703.017301
[20]
Salah B, Dinh Xuan AT, Fouilladieu JL, Lockhart A, Regnard J (1988) Nasal mucociliary transport in healthy subjects is slower when breathing dry air. Eur Respir J 1: 852–855.
[21]
Cauchemez S, Valleron AJ, Bo?lle PY, Flahault A, Ferguson NM (2008) Estimating the impact of school closure on influenza transmission from Sentinel data. Nature 452: 750–754. doi: 10.1038/nature06732
[22]
Azziz-Baumgartner E, Dao C, Nasreen S, Bhuiyan MU, Mah-E-Muneer S, et al. (2012) Seasonality, timing, and climate drivers of influenza activity worldwide. J Infect Dis 206: 838–46 doi:10.1093/infdis/jis467.
[23]
Bloom-Feshbach K, Alonso WJ, Charu V, Tamerius J, Simonsen L (2012) Latitudinal variation in seasonal activity of influenza and respiratory syncytial virus (RSV): a global comparative review. Plos One In Press. doi: 10.1371/journal.pone.0054445
[24]
World Health Organization. (2012) FluNet. Available: http://www.who.int/flunet. Accessed Oct 12, 2011.
[25]
New M, Lister D, Hulme M, Makin I (2002) A high-resolution data set of surface climate over global land areas. Clim Res 21: 1–25. doi: 10.3354/cr021001
[26]
Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, et al. (1996) The NCEP/NCAR 40-year reanalysis project. B Am Meteorol Soc 77: 437–472. doi: 10.1175/1520-0477(1996)077<0437:tnyrp>2.0.co;2
[27]
Laguna-Torres AV, Gómez J, Oca?a V, Aguilar P, Saldarriaga T, et al. (2009) Influenza-like illness sentinel surveillance in Peru. PLoS ONE 4: e6118. doi: 10.1371/journal.pone.0006118
[28]
Chow A, Ma S, Ling AE, Chew SK (2006) Influenza-associated deaths in tropical Singapore. Emerg Infect Dis 12: 114–121. doi: 10.3201/eid1201.050826
[29]
Colizza V, Barrat A, Barthelemy M, Valleron A (2007) Modeling the Worldwide Spread of Pandemic Influenza: Baseline Case and Containment Interventions. PLoS Medicine 4(1): e13 doi:10.1371/journal.pmed.0040013.
[30]
Kenah E, Chao DL, Matrajt L, Halloran ME, Longini IM Jr (2011) The Global Transmission and Control of Influenza. PLoS ONE 6(5): e19515 doi:10.1371/journal.pone.0019515.
[31]
Lowen AC, Steel J, Mubareka S, Palese P (2008) High temperature (30°C) blocks aerosol but not contact transmission of influenza virus. J Virol 78: 5650–5652. doi: 10.1128/jvi.00325-08
[32]
Shechmeister I (1950) Studies on the experimental epidemiology of respiratory infections: III. certain aspects of the behavior of type A influenza virus as an air-borne cloud. J Infect Dis 87: 128–132. doi: 10.1093/infdis/87.2.128
[33]
Schaffer F, Soergel M, Straube D (1976) Survival of airborne influenza virus: effects of propagating host, relative humidity, and composition of spray fluids. Arch Virol 51: 263–278. doi: 10.1007/bf01317930
[34]
Yang W, Elankumaran S, Marr LC (2012) Relationship between humidity and influenza A viability in droplets and implications for influenza's seasonality. PLoS ONE 7(10): e46789. doi: 10.1371/journal.pone.0046789
[35]
McDevitt J, Rudnick S, First M, Spengler J (2010) Role of absolute humidity in the inactivation of influenza viruses on stainless steel surfaces at elevated temperatures. Appl Environ Microb 76: 3943–3947. doi: 10.1128/aem.02674-09
[36]
Harper G (1961) Airborne micro-organisms: survival tests with four viruses. J Hyg - Cambridge 59: 479–486. doi: 10.1017/s0022172400039176
[37]
Shaman J, Jeon CY, Giovannucci E, Lipsitch M (2011) Shortcomings of vitamin D-based model simulations of seasonal influenza. PLoS ONE 6: e20743. doi: 10.1371/journal.pone.0020743
[38]
Killingley B, Enstone J, Booy R, Hayward A (2011) Potential role of human challenge studies for investigation of influenza transmission. Lancet Infect Dis 11: 70142–6. doi: 10.1016/s1473-3099(11)70142-6
[39]
Salathé M, Kazandjieva M, Lee JW, Levis P, Feldman MW, et al. (2010) A high-resolution human contact network for infectious disease transmission. Proc Natl Acad Sci U S A 107: 22020–5. doi: 10.1073/pnas.1009094108
[40]
Stehlé J, Voirin N, Barrat A, Cattuto C, Colizza V, et al. (2011) Simulation of an SEIR infectious disease model on the dynamic contact network of conference attendees. BMC Med 9: 87. doi: 10.1186/1741-7015-9-87
[41]
Chowell G, Viboud C, Simonsen L, Miller M, Alonso W (2010) The reproduction number of seasonal influenza epidemics in Brazil, 1996–2006. Proc R Soc B 277(1689): 1857–1866. doi: 10.1098/rspb.2009.1897
[42]
Viboud C, Bj?rnstad ON, Smith DL, Simonsen L, Miller MA, et al. (2006) Synchrony, waves, and spatial hierarchies in the spread of influenza. Science 312(5772): 447–451. doi: 10.1126/science.1125237
[43]
Weinberger DM, Krause TG, M?lbak K, Cliff A, Briem H, et al. (2012) Influenza epidemics in iceland over 9 decades: changes in timing and synchrony with the United States and Europe. Am J Epidemiol 176(7): 649–655. doi: 10.1093/aje/kws140
[44]
Truscott J, Fraser C, Cauchemez S, Meeyai A, Hinsley W, et al. (2012) Essential epidemiological mechanisms underpinning the transmission dynamics of seasonal influenza. J R Soc Interface 9(67): 304–312. doi: 10.1098/rsif.2011.0309
[45]
de Mello WA, de Paiva TM, Ishida MA, Benega MA, Santos MC, et al. (2009) The dilemma of influenza vaccine recommendations when applied to the tropics: the Brazilian case examined under alternative scenarios. PLoS ONE 4(4): e5095. doi: 10.1371/journal.pone.0005095
[46]
Stensballe LG, Devasundaram JK, Simoes EA (2003) Respiratory syncytial virus epidemics: the ups and downs of a seasonal virus. Pediatr Infect Dis J 22: S21–32. doi: 10.1097/01.inf.0000053882.70365.c9
[47]
Pitzer VE, Viboud C, Lopman BA, Patel MM, Parashar UD, et al. (2011) Influence of birth rates and transmission rates on the global seasonality of rotavirus incidence. J R Soc Interface 8(64): 1584–1593. doi: 10.1098/rsif.2011.0062