[1] | Caplan J, Padmanabhan M, Dinesh-Kumar SP (2008) Plant NB-LRR immune receptors: from recognition to transcriptional reprogramming. Cell Host Microbe 3: 126–135. doi: 10.1016/j.chom.2008.02.010
|
[2] | Jones JD, Dangl JL (2006) The plant immune system. Nature 444: 323–329. doi: 10.1038/nature05286
|
[3] | Eulgem T (2005) Regulation of the Arabidopsis defense transcriptome. Trends Plant Sci 10: 71–78. doi: 10.1016/j.tplants.2004.12.006
|
[4] | Heath MC (2000) Hypersensitive response-related death. Plant Mol Biol 44: 321–334.
|
[5] | Padmanabhan MS, Dinesh-Kumar SP (2010) All hands on deck-the role of chloroplasts, endoplasmic reticulum, and the nucleus in driving plant innate immunity. Mol Plant Microbe Interact 23: 1368–1380. doi: 10.1094/mpmi-05-10-0113
|
[6] | Shen QH, Saijo Y, Mauch S, Biskup C, Bieri S, et al. (2007) Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses. Science 315: 1098–1103. doi: 10.1126/science.1136372
|
[7] | Zhu Z, Xu F, Zhang Y, Cheng YT, Wiermer M, et al. (2010) Arabidopsis resistance protein SNC1 activates immune responses through association with a transcriptional corepressor. Proc Natl Acad Sci U S A 107: 13960–13965. doi: 10.1073/pnas.1002828107
|
[8] | Deslandes L, Olivier J, Theulieres F, Hirsch J, Feng DX, et al. (2002) Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. Proc Natl Acad Sci U S A 99: 2404–2409. doi: 10.1073/pnas.032485099
|
[9] | Deslandes L, Olivier J, Peeters N, Feng DX, Khounlotham M, et al. (2003) Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc Natl Acad Sci U S A 100: 8024–8029. doi: 10.1073/pnas.1230660100
|
[10] | Ting JP, Davis BK (2005) CATERPILLER: a novel gene family important in immunity, cell death, and diseases. Annu Rev Immunol 23: 387–414. doi: 10.1146/annurev.immunol.23.021704.115616
|
[11] | Meissner TB, Li A, Biswas A, Lee KH, Liu YJ, et al. (2010) NLR family member NLRC5 is a transcriptional regulator of MHC class I genes. Proc Natl Acad Sci U S A 107: 13794–13799. doi: 10.1073/pnas.1008684107
|
[12] | Whitham S, Dinesh-Kumar SP, Choi D, Hehl R, Corr C, et al. (1994) The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell 78: 1101–1115. doi: 10.1016/0092-8674(94)90283-6
|
[13] | Csillery G, Tobias L, Rusko J (1983) A new pepper strain of TMV. Acta Phytopathol Acad Sci Hungaricae 18: 195–200.
|
[14] | Abbink TE, de Vogel J, Bol JF, Linthorst HJ (2001) Induction of a hypersensitive response by chimeric helicase sequences of tobamoviruses U1 and Ob in N-carrying tobacco. Mol Plant Microbe Interact 14: 1086–1095. doi: 10.1094/mpmi.2001.14.9.1086
|
[15] | Erickson FL, Holzberg S, Calderon-Urrea A, Handley V, Axtell M, et al. (1999) The helicase domain of the TMV replicase proteins induces the N-mediated defence response in tobacco. Plant J 18: 67–75. doi: 10.1046/j.1365-313x.1999.00426.x
|
[16] | Caplan JL, Mamillapalli P, Burch-Smith TM, Czymmek K, Dinesh-Kumar SP (2008) Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector. Cell 132: 449–462. doi: 10.1016/j.cell.2007.12.031
|
[17] | Burch-Smith TM, Schiff M, Caplan JL, Tsao J, Czymmek K, et al. (2007) A novel role for the TIR domain in association with pathogen-derived elicitors. PLoS Biol 5: e68. doi: 10.1371/journal.pbio.0050068
|
[18] | Klein J, Saedler H, Huijser P (1996) A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOSA. Mol Gen Genet 250: 7–16. doi: 10.1007/bf02191820
|
[19] | Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, et al. (2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8: 517–527. doi: 10.1016/j.devcel.2005.01.018
|
[20] | Gandikota M, Birkenbihl RP, Hohmann S, Cardon GH, Saedler H, et al. (2007) The miRNA156/157 recognition element in the 3′ UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. Plant J 49: 683–693. doi: 10.1111/j.1365-313x.2006.02983.x
|
[21] | Huijser P, Schmid M (2011) The control of developmental phase transitions in plants. Development 138: 4117–4129. doi: 10.1242/dev.063511
|
[22] | Chen X, Zhang Z, Liu D, Zhang K, Li A, et al. (2010) SQUAMOSA promoter-binding protein-like transcription factors: star players for plant growth and development. J Integr Plant Biol 52: 946–951. doi: 10.1111/j.1744-7909.2010.00987.x
|
[23] | Padgett HS, Beachy RN (1993) Analysis of a tobacco mosaic virus strain capable of overcoming N gene-mediated resistance. Plant Cell 5: 577–586. doi: 10.1105/tpc.5.5.577
|
[24] | Wang JW, Schwab R, Czech B, Mica E, Weigel D (2008) Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana. Plant Cell 20: 1231–1243. doi: 10.1105/tpc.108.058180
|
[25] | Kerppola TK (2008) Bimolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells. Annu Rev Biophys 37: 465–487. doi: 10.1146/annurev.biophys.37.032807.125842
|
[26] | Heinlein M, Padgett HS, Gens JS, Pickard BG, Casper SJ, et al. (1998) Changing patterns of localization of the tobacco mosaic virus movement protein and replicase to the endoplasmic reticulum and microtubules during infection. Plant Cell 10: 1107–1120. doi: 10.2307/3870715
|
[27] | Liu Y, Schiff M, Marathe R, Dinesh-Kumar SP (2002) Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J 30: 415–429. doi: 10.1046/j.1365-313x.2002.01297.x
|
[28] | Caplan JL, Zhu X, Mamillapalli P, Marathe R, Anandalakshmi R, et al. (2009) Induced ER chaperones regulate a receptor-like kinase to mediate antiviral innate immune response in plants. Cell Host Microbe 6: 457–469. doi: 10.1016/j.chom.2009.10.005
|
[29] | Dinesh-Kumar SP, Tham WH, Baker BJ (2000) Structure-function analysis of the tobacco mosaic virus resistance gene N. Proc Natl Acad Sci U S A 97: 14789–14794. doi: 10.1073/pnas.97.26.14789
|
[30] | Takken FL, Albrecht M, Tameling WI (2006) Resistance proteins: molecular switches of plant defence. Curr Opin Plant Biol 9: 383–390. doi: 10.1016/j.pbi.2006.05.009
|
[31] | Collier SM, Moffett P (2009) NB-LRRs work a “bait and switch” on pathogens. Trends Plant Sci 14: 521–529. doi: 10.1016/j.tplants.2009.08.001
|
[32] | Mestre P, Baulcombe DC (2006) Elicitor-mediated oligomerization of the tobacco N disease resistance protein. Plant Cell 18: 491–501. doi: 10.1105/tpc.105.037234
|
[33] | Wirthmueller L, Zhang Y, Jones JD, Parker JE (2007) Nuclear accumulation of the Arabidopsis immune receptor RPS4 is necessary for triggering EDS1-dependent defense. Curr Biol 17: 2023–2029. doi: 10.1016/j.cub.2007.10.042
|
[34] | Bartsch M, Gobbato E, Bednarek P, Debey S, Schultze JL, et al. (2006) Salicylic acid-independent ENHANCED DISEASE SUSCEPTIBILITY1 signaling in Arabidopsis immunity and cell death is regulated by the monooxygenase FMO1 and the Nudix hydrolase NUDT7. Plant Cell 18: 1038–1051. doi: 10.1105/tpc.105.039982
|
[35] | Garcia AV, Blanvillain-Baufume S, Huibers RP, Wiermer M, Li G, et al. (2010) Balanced nuclear and cytoplasmic activities of EDS1 are required for a complete plant innate immune response. PLoS Pathog 6: e1000970. doi: 10.1371/journal.ppat.1000970
|
[36] | Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21: 3448–3449. doi: 10.1093/bioinformatics/bti551
|
[37] | Song JT, Lu H, McDowell JM, Greenberg JT (2004) A key role for ALD1 in activation of local and systemic defenses in Arabidopsis. Plant J 40: 200–212. doi: 10.1111/j.1365-313x.2004.02200.x
|
[38] | Reuber TL, Ausubel FM (1996) Isolation of Arabidopsis genes that differentiate between resistance responses mediated by the RPS2 and RPM1 disease resistance genes. Plant Cell 8: 241–249. doi: 10.2307/3870267
|
[39] | Knoth C, Eulgem T (2008) The oomycete response gene LURP1 is required for defense against Hyaloperonospora parasitica in Arabidopsis thaliana. Plant J 55: 53–64. doi: 10.1111/j.1365-313x.2008.03486.x
|
[40] | Slootweg E, Roosien J, Spiridon LN, Petrescu AJ, Tameling W, et al. (2010) Nucleocytoplasmic distribution is required for activation of resistance by the potato NB-LRR receptor Rx1 and is balanced by its functional domains. Plant Cell 22: 4195–4215. doi: 10.1105/tpc.110.077537
|
[41] | Krasileva KV, Dahlbeck D, Staskawicz BJ (2010) Activation of an Arabidopsis resistance protein is specified by the in planta association of its leucine-rich repeat domain with the cognate oomycete effector. Plant Cell 22: 2444–2458. doi: 10.1105/tpc.110.075358
|
[42] | Tonaco IA, Borst JW, de Vries SC, Angenent GC, Immink RG (2006) In vivo imaging of MADS-box transcription factor interactions. J Exp Bot 57: 33–42. doi: 10.1093/jxb/erj011
|
[43] | Alpatov R, Munguba GC, Caton P, Joo JH, Shi Y, et al. (2004) Nuclear speckle-associated protein Pnn/DRS binds to the transcriptional corepressor CtBP and relieves CtBP-mediated repression of the E-cadherin gene. Mol Cell Biol 24: 10223–10235. doi: 10.1128/mcb.24.23.10223-10235.2004
|
[44] | Johnston RJ Jr, Hobert O (2005) A novel C. elegans zinc finger transcription factor, lsy-2, required for the cell type-specific expression of the lsy-6 microRNA. Development 132: 5451–5460. doi: 10.1242/dev.02163
|
[45] | Wiermer M, Feys BJ, Parker JE (2005) Plant immunity: the EDS1 regulatory node. Curr Opin Plant Biol 8: 383–389. doi: 10.1016/j.pbi.2005.05.010
|
[46] | Bhattacharjee S, Halane MK, Kim SH, Gassmann W (2011) Pathogen effectors target Arabidopsis EDS1 and alter its interactions with immune regulators. Science 334: 1405–1408. doi: 10.1126/science.1211592
|
[47] | Heidrich K, Wirthmueller L, Tasset C, Pouzet C, Deslandes L, et al. (2011) Arabidopsis EDS1 connects pathogen effector recognition to cell compartment-specific immune responses. Science 334: 1401–1404. doi: 10.1126/science.1211641
|
[48] | Ueda H, Yamaguchi Y, Sano H (2006) Direct interaction between the tobacco mosaic virus helicase domain and the ATP-bound resistance protein, N factor during the hypersensitive response in tobacco plants. Plant Mol Biol 61: 31–45. doi: 10.1007/s11103-005-5817-8
|
[49] | Kinkema M, Fan W, Dong X (2000) Nuclear localization of NPR1 is required for activation of PR gene expression. Plant Cell 12: 2339–2350. doi: 10.2307/3871233
|
[50] | Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735–743. doi: 10.1046/j.1365-313x.1998.00343.x
|
[51] | Katagiri F, Thilmony R, He SY (2002) The Arabidopsis thaliana-pseudomonas syringae interaction. The Arabidopsis Book (American Society of Plant Biologists) 1: e0039. doi: 10.1199/tab.0039
|
[52] | Wu ZJ, Irizarry RA, Gentleman R, Martinez-Murillo F, Spencer F (2004) A model-based background adjustment for oligonucleotide expression arrays. J Am Stat Assoc 99: 909–917. doi: 10.1198/016214504000000683
|
[53] | Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(?Delta Delta C(T)) Method. Methods 25: 402–408. doi: 10.1006/meth.2001.1262
|