Exposure to hepatitis C virus (HCV) typically results in chronic infection that leads to progressive liver disease ranging from mild inflammation to severe fibrosis and cirrhosis as well as primary liver cancer. HCV triggers innate immune signaling within the infected hepatocyte, a first step in mounting of the adaptive response against HCV infection. Persistent inflammation is strongly associated with liver tumorigenesis. The goal of our work was to investigate the initiation of the inflammatory processes triggered by HCV viral proteins in their host cell and their possible link with HCV-related liver cancer. We report a dramatic upregulation of the lymphotoxin signaling pathway and more specifically of lymphotoxin-β in tumors of the FL-N/35 HCV-transgenic mice. Lymphotoxin expression is accompanied by activation of NF-κB, neosynthesis of chemokines and intra-tumoral recruitment of mononuclear cells. Spectacularly, IKKβ inactivation in FL-N/35 mice drastically reduces tumor incidence. Activation of lymphotoxin-β pathway can be reproduced in several cellular models, including the full length replicon and HCV-infected primary human hepatocytes. We have identified NS5B, the HCV RNA dependent RNA polymerase, as the viral protein responsible for this phenotype and shown that pharmacological inhibition of its activity alleviates activation of the pro-inflammatory pathway. These results open new perspectives in understanding the inflammatory mechanisms linked to HCV infection and tumorigenesis.
References
[1]
Poynard T, Yuen MF, Ratziu V, Lai CL (2003) Viral hepatitis C. Lancet 362: 2095–2100. doi: 10.1016/s0140-6736(03)15109-4
[2]
Hoofnagle JH (2002) Course and outcome of hepatitis C. Hepatology 36: S21–29. doi: 10.1002/hep.1840360704
[3]
Levrero M (2006) Viral hepatitis and liver cancer: the case of hepatitis C. Oncogene 25: 3834–3847. doi: 10.1038/sj.onc.1209562
[4]
van Kempen LC, de Visser KE, Coussens LM (2006) Inflammation, proteases and cancer. Eur J Cancer 42: 728–734. doi: 10.1016/j.ejca.2006.01.004
[5]
Federico A, Morgillo F, Tuccillo C, Ciardiello F, Loguercio C (2007) Chronic inflammation and oxidative stress in human carcinogenesis. Int J Cancer 121: 2381–2386. doi: 10.1002/ijc.23192
[6]
Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140: 883–899. doi: 10.1016/j.cell.2010.01.025
[7]
McGivern DR, Lemon SM (2011) Virus-specific mechanisms of carcinogenesis in hepatitis C virus associated liver cancer. Oncogene 30: 1969–1983. doi: 10.1038/onc.2010.594
[8]
Waris G, Tardif KD, Siddiqui A (2002) Endoplasmic reticulum (ER) stress: hepatitis C virus induces an ER-nucleus signal transduction pathway and activates NF-kappaB and STAT-3. Biochem Pharmacol 64: 1425–1430. doi: 10.1016/s0006-2952(02)01300-x
[9]
Greten FR, Karin M (2004) The IKK/NF-kappaB activation pathway-a target for prevention and treatment of cancer. Cancer Lett 206: 193–199. doi: 10.1016/j.canlet.2003.08.029
[10]
Lowes KN, Croager EJ, Abraham LJ, Olynyk JK, Yeoh GC (2003) Upregulation of lymphotoxin beta expression in liver progenitor (oval) cells in chronic hepatitis C. Gut 52: 1327–1332. doi: 10.1136/gut.52.9.1327
[11]
Vainer GW, Pikarsky E, Ben-Neriah Y (2008) Contradictory functions of NF-kappaB in liver physiology and cancer. Cancer Lett 267: 182–188. doi: 10.1016/j.canlet.2008.03.016
[12]
Waris G, Livolsi A, Imbert V, Peyron JF, Siddiqui A (2003) Hepatitis C virus NS5A and subgenomic replicon activate NF-kappaB via tyrosine phosphorylation of IkappaBalpha and its degradation by calpain protease. J Biol Chem 278: 40778–40787. doi: 10.1074/jbc.m303248200
[13]
Dolganiuc A, Oak S, Kodys K, Golenbock DT, Finberg RW, et al. (2004) Hepatitis C core and nonstructural 3 proteins trigger toll-like receptor 2-mediated pathways and inflammatory activation. Gastroenterology 127: 1513–1524. doi: 10.1053/j.gastro.2004.08.067
[14]
Sato Y, Kato J, Takimoto R, Takada K, Kawano Y, et al. (2006) Hepatitis C virus core protein promotes proliferation of human hepatoma cells through enhancement of transforming growth factor alpha expression via activation of nuclear factor-kappaB. Gut 55: 1801–1808. doi: 10.1136/gut.2005.070417
[15]
Rennert PD, Browning JL, Mebius R, Mackay F, Hochman PS (1996) Surface lymphotoxin alpha/beta complex is required for the development of peripheral lymphoid organs. J Exp Med 184: 1999–2006. doi: 10.1084/jem.184.5.1999
[16]
Tumanov AV, Kuprash DV, Nedospasov SA (2003) The role of lymphotoxin in development and maintenance of secondary lymphoid tissues. Cytokine Growth Factor Rev 14: 275–288. doi: 10.1016/s1359-6101(03)00026-1
[17]
Browning JL, Sizing ID, Lawton P, Bourdon PR, Rennert PD, et al. (1997) Characterization of lymphotoxin-alpha beta complexes on the surface of mouse lymphocytes. J Immunol 159: 3288–3298.
[18]
Ware CF (2005) Network communications: lymphotoxins, LIGHT, and TNF. Annu Rev Immunol 23: 787–819. doi: 10.1146/annurev.immunol.23.021704.115719
[19]
Ware CF (2008) Targeting lymphocyte activation through the lymphotoxin and LIGHT pathways. Immunol Rev 223: 186–201. doi: 10.1111/j.1600-065x.2008.00629.x
[20]
Bonizzi G, Karin M (2004) The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends in immunology 25: 280–288. doi: 10.1016/j.it.2004.03.008
[21]
Haybaeck J, Zeller N, Wolf MJ, Weber A, Wagner U, et al. (2009) A lymphotoxin-driven pathway to hepatocellular carcinoma. Cancer Cell 16: 295–308. doi: 10.1016/j.ccr.2009.08.021
[22]
Chen CM, You LR, Hwang LH, Lee YH (1997) Direct interaction of hepatitis C virus core protein with the cellular lymphotoxin-beta receptor modulates the signal pathway of the lymphotoxin-beta receptor. J Virol 71: 9417–9426.
[23]
You LR, Chen CM, Lee YH (1999) Hepatitis C virus core protein enhances NF-kappaB signal pathway triggering by lymphotoxin-beta receptor ligand and tumor necrosis factor alpha. J Virol 73: 1672–1681.
[24]
Ng TI, Mo H, Pilot-Matias T, He Y, Koev G, et al. (2007) Identification of host genes involved in hepatitis C virus replication by small interfering RNA technology. Hepatology 45: 1413–1421. doi: 10.1002/hep.21608
[25]
Maeda S, Kamata H, Luo JL, Leffert H, Karin M (2005) IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 121: 977–990. doi: 10.1016/j.cell.2005.04.014
[26]
Yu G-Y, He G, Li C-Y, Tang M, Grivennikov S, et al. (2012) Expression of Hepatitis C Virus RNA-dependent RNA Polymerase Triggers Innate Immune Signaling and Cytokine Production. Molecular Cell 48(2): 313–21. doi: 10.1016/j.molcel.2012.07.032
[27]
Lerat H, Honda M, Beard MR, Loesch K, Sun J, et al. (2002) Steatosis and liver cancer in transgenic mice expressing the structural and nonstructural proteins of hepatitis C virus. Gastroenterology 122: 352–365. doi: 10.1053/gast.2002.31001
[28]
Keasler VV, Lerat H, Madden CR, Finegold MJ, McGarvey MJ, et al. (2006) Increased liver pathology in hepatitis C virus transgenic mice expressing the hepatitis B virus X protein. Virology 347: 466–475. doi: 10.1016/j.virol.2005.11.050
[29]
Disson O, Haouzi D, Desagher S, Loesch K, Hahne M, et al. (2004) Impaired clearance of virus-infected hepatocytes in transgenic mice expressing the hepatitis C virus polyprotein. Gastroenterology 126: 859–872. doi: 10.1053/j.gastro.2003.12.005
[30]
Renard CA, Fourel G, Bralet MP, Degott C, De La Coste A, et al. (2000) Hepatocellular carcinoma in WHV/N-myc2 transgenic mice: oncogenic mutations of beta-catenin and synergistic effect of p53 null alleles. Oncogene 19: 2678–2686. doi: 10.1038/sj.onc.1203617
[31]
Columba-Cabezas S, Griguoli M, Rosicarelli B, Magliozzi R, Ria F, et al. (2006) Suppression of established experimental autoimmune encephalomyelitis and formation of meningeal lymphoid follicles by lymphotoxin beta receptor-Ig fusion protein. J Neuroimmunol 179: 76–86. doi: 10.1016/j.jneuroim.2006.06.015
[32]
Browning JL (2008) Inhibition of the lymphotoxin pathway as a therapy for autoimmune disease. Immunol Rev 223: 202–220. doi: 10.1111/j.1600-065x.2008.00633.x
[33]
Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, et al. (2004) NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 431: 461–466. doi: 10.1038/nature02924
[34]
Hacker H, Karin M (2006) Regulation and function of IKK and IKK-related kinases. Science's STKE : signal transduction knowledge environment 2006: re13 doi:10.1126/stke.3572006re13.
[35]
Maeda S, Chang L, Li ZW, Luo JL, Leffert H, et al. (2003) IKKbeta is required for prevention of apoptosis mediated by cell-bound but not by circulating TNFalpha. Immunity 19: 725–737. doi: 10.1016/s1074-7613(03)00301-7
[36]
Ikeda M, Yi M, Li K, Lemon SM (2002) Selectable subgenomic and genome-length dicistronic RNAs derived from an infectious molecular clone of the HCV-N strain of hepatitis C virus replicate efficiently in cultured Huh7 cells. J Virol 76: 2997–3006. doi: 10.1128/jvi.76.6.2997-3006.2002
[37]
Zhong J, Gastaminza P, Cheng G, Kapadia S, Kato T, et al. (2005) Robust hepatitis C virus infection in vitro. Proc Natl Acad Sci U S A 102: 9294–9299. doi: 10.1073/pnas.0503596102
[38]
Pietschmann T, Kaul A, Koutsoudakis G, Shavinskaya A, Kallis S, et al. (2006) Construction and characterization of infectious intragenotypic and intergenotypic hepatitis C virus chimeras. Proc Natl Acad Sci U S A 103: 7408–7413. doi: 10.1073/pnas.0504877103
[39]
Guidotti LG, Chisari FV (2006) Immunobiology and pathogenesis of viral hepatitis. Annu Rev Pathol 1: 23–61. doi: 10.1146/annurev.pathol.1.110304.100230
[40]
Gripon P, Rumin S, Urban S, Le Seyec J, Glaise D, et al. (2002) Infection of a human hepatoma cell line by hepatitis B virus. Proc Natl Acad Sci U S A 99: 15655–15660. doi: 10.1073/pnas.232137699
[41]
Carroll SS, Tomassini JE, Bosserman M, Getty K, Stahlhut MW, et al. (2003) Inhibition of hepatitis C virus RNA replication by 2′-modified nucleoside analogs. J Biol Chem 278: 11979–11984. doi: 10.1074/jbc.m210914200
[42]
Le Pogam S, Jiang WR, Leveque V, Rajyaguru S, Ma H, et al. (2006) In vitro selected Con1 subgenomic replicons resistant to 2′-C-methyl-cytidine or to R1479 show lack of cross resistance. Virology 351: 349–359. doi: 10.1016/j.virol.2006.03.045
[43]
Stuyver LJ, McBrayer TR, Tharnish PM, Clark J, Hollecker L, et al. (2006) Inhibition of hepatitis C replicon RNA synthesis by beta-D-2′-deoxy-2′-fluoro-2′-C-methylcyt?idine:a specific inhibitor of hepatitis C virus replication. Antivir Chem Chemother 17: 79–87. doi: 10.1021/jm0502788
[44]
Qin W, Yamashita T, Shirota Y, Lin Y, Wei W, et al. (2001) Mutational analysis of the structure and functions of hepatitis C virus RNA-dependent RNA polymerase. Hepatology 33: 728–737. doi: 10.1053/jhep.2001.22765
[45]
Karin M, Greten FR (2005) NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5: 749–759. doi: 10.1038/nri1703
[46]
Akkari L, Gregoire D, Floc'h N, Moreau M, Hernandez C, et al. (2012) Hepatitis C viral protein NS5A induces EMT and participates in oncogenic transformation of primary hepatocyte precursors. J Hepatol 57(5): 1021–1028 doi:10.1016/j.jhep.2012.06.027.
[47]
Shackel NA, McGuinness PH, Abbott CA, Gorrell MD, McCaughan GW (2002) Insights into the pathobiology of hepatitis C virus-associated cirrhosis: analysis of intrahepatic differential gene expression. Am J Pathol 160: 641–654. doi: 10.1016/s0002-9440(10)64884-5
[48]
Ali SR, Timmer AM, Bilgrami S, Park EJ, Eckmann L, et al. (2011) Anthrax toxin induces macrophage death by p38 MAPK inhibition but leads to inflammasome activation via ATP leakage. Immunity 35: 34–44. doi: 10.1016/j.immuni.2011.04.015
[49]
He G, Yu GY, Temkin V, Ogata H, Kuntzen C, et al. (2010) Hepatocyte IKKbeta/NF-kappaB inhibits tumor promotion and progression by preventing oxidative stress-driven STAT3 activation. Cancer Cell 17: 286–297. doi: 10.1016/j.ccr.2009.12.048
[50]
Jiang R, Xia Y, Li J, Deng L, Zhao L, et al. (2010) High expression levels of IKKalpha and IKKbeta are necessary for the malignant properties of liver cancer. Int J Cancer 126: 1263–1274.
[51]
Chaturvedi MM, Sung B, Yadav VR, Kannappan R, Aggarwal BB (2011) NF-kappaB addiction and its role in cancer: ‘one size does not fit all’. Oncogene 30: 1615–1630. doi: 10.1038/onc.2010.566
[52]
Harvey CE, Post JJ, Palladinetti P, Freeman AJ, Ffrench RA, et al. (2003) Expression of the chemokine IP-10 (CXCL10) by hepatocytes in chronic hepatitis C virus infection correlates with histological severity and lobular inflammation. J Leukoc Biol 74: 360–369. doi: 10.1189/jlb.0303093
[53]
Mihm S, Schweyer S, Ramadori G (2003) Expression of the chemokine IP-10 correlates with the accumulation of hepatic IFN-gamma and IL-18 mRNA in chronic hepatitis C but not in hepatitis B. J Med Virol 70: 562–570. doi: 10.1002/jmv.10431
[54]
Zeremski M, Petrovic LM, Talal AH (2007) The role of chemokines as inflammatory mediators in chronic hepatitis C virus infection. J Viral Hepat 14: 675–687. doi: 10.1111/j.1365-2893.2006.00838.x
[55]
Borgland SL, Bowen GP, Wong NC, Libermann TA, Muruve DA (2000) Adenovirus vector-induced expression of the C-X-C chemokine IP-10 is mediated through capsid-dependent activation of NF-kappaB. J Virol 74: 3941–3947. doi: 10.1128/jvi.74.9.3941-3947.2000
[56]
Mantovani A, Savino B, Locati M, Zammataro L, Allavena P, et al. (2010) The chemokine system in cancer biology and therapy. Cytokine Growth Factor Rev 21: 27–39. doi: 10.1016/j.cytogfr.2009.11.007
[57]
Ishido S, Fujita T, Hotta H (1998) Complex formation of NS5B with NS3 and NS4A proteins of hepatitis C virus. Biochem Biophys Res Commun 244: 35–40. doi: 10.1006/bbrc.1998.8202
[58]
Munakata T, Nakamura M, Liang Y, Li K, Lemon SM (2005) Down-regulation of the retinoblastoma tumor suppressor by the hepatitis C virus NS5B RNA-dependent RNA polymerase. Proc Natl Acad Sci U S A 102: 18159–18164. doi: 10.1073/pnas.0505605102
[59]
McGivern DR, Villanueva RA, Chinnaswamy S, Kao CC, Lemon SM (2009) Impaired replication of hepatitis C virus containing mutations in a conserved NS5B retinoblastoma protein-binding motif. J Virol 83: 7422–7433. doi: 10.1128/jvi.00262-09
[60]
Goh PY, Tan YJ, Lim SP, Tan YH, Lim SG, et al. (2004) Cellular RNA helicase p68 relocalization and interaction with the hepatitis C virus (HCV) NS5B protein and the potential role of p68 in HCV RNA replication. J Virol 78: 5288–5298. doi: 10.1128/jvi.78.10.5288-5298.2004
[61]
Kyono K, Miyashiro M, Taguchi I (2002) Human eukaryotic initiation factor 4AII associates with hepatitis C virus NS5B protein in vitro. Biochem Biophys Res Commun 292: 659–666. doi: 10.1006/bbrc.2002.6702
[62]
Malathi K, Saito T, Crochet N, Barton DJ, Gale M Jr, et al. (2010) RNase L releases a small RNA from HCV RNA that refolds into a potent PAMP. Rna 16: 2108–2119. doi: 10.1261/rna.2244210
[63]
Ranjith-Kumar CT, Wen Y, Baxter N, Bhardwaj K, Cheng Kao C (2011) A cell-based assay for RNA synthesis by the HCV polymerase reveals new insights on mechanism of polymerase inhibitors and modulation by NS5A. PLoS One 6: e22575. doi: 10.1371/journal.pone.0022575
[64]
Simonin Y, Disson O, Lerat H, Antoine E, Biname F, et al. (2009) Calpain activation by hepatitis C virus proteins inhibits the extrinsic apoptotic signaling pathway. Hepatology 50: 1370–1379. doi: 10.1002/hep.23169
[65]
Biname F, Lassus P, Hibner U (2008) Transforming growth factor beta controls the directional migration of hepatocyte cohorts by modulating their adhesion to fibronectin. Mol Biol Cell 19: 945–956. doi: 10.1091/mbc.e07-09-0967