Enterovirus 71 (EV71) is the major causative pathogen of hand, foot, and mouth disease (HFMD). Its pathogenicity is not fully understood, but innate immune evasion is likely a key factor. Strategies to circumvent the initiation and effector phases of anti-viral innate immunity are well known; less well known is whether EV71 evades the signal transduction phase regulated by a sophisticated interplay of cellular and viral proteins. Here, we show that EV71 inhibits anti-viral type I interferon (IFN) responses by targeting the mitochondrial anti-viral signaling (MAVS) protein—a unique adaptor molecule activated upon retinoic acid induced gene-I (RIG-I) and melanoma differentiation associated gene (MDA-5) viral recognition receptor signaling—upstream of type I interferon production. MAVS was cleaved and released from mitochondria during EV71 infection. An in vitro cleavage assay demonstrated that the viral 2A protease (2Apro), but not the mutant 2Apro (2Apro-110) containing an inactivated catalytic site, cleaved MAVS. The Protease-Glo assay revealed that MAVS was cleaved at 3 residues between the proline-rich and transmembrane domains, and the resulting fragmentation effectively inactivated downstream signaling. In addition to MAVS cleavage, we found that EV71 infection also induced morphologic and functional changes to the mitochondria. The EV71 structural protein VP1 was detected on purified mitochondria, suggesting not only a novel role for mitochondria in the EV71 replication cycle but also an explanation of how EV71-derived 2Apro could approach MAVS. Taken together, our findings reveal a novel strategy employed by EV71 to escape host anti-viral innate immunity that complements the known EV71-mediated immune-evasion mechanisms.
References
[1]
Kawai T, Akira S (2006) Innate immune recognition of viral infection. Nat Immunol 7: 131–137. doi: 10.1038/ni1303
[2]
Takeuchi O, Akira S (2007) Recognition of viruses by innate immunity. Immunol Rev 220: 214–224. doi: 10.1111/j.1600-065x.2007.00562.x
[3]
Seth RB, Sun L, Ea CK, Chen ZJ (2005) Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122: 669–682. doi: 10.1016/j.cell.2005.08.012
[4]
Xu LG, Wang YY, Han KJ, Li LY, Zhai Z, et al. (2005) VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell 19: 727–740. doi: 10.1016/j.molcel.2005.08.014
[5]
Kawai T, Takahashi K, Sato S, Coban C, Kumar H, et al. (2005) IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol 6: 981–988. doi: 10.1038/ni1243
[6]
Meylan E, Curran J, Hofmann K, Moradpour D, Binder M, et al. (2005) Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437: 1167–1172. doi: 10.1038/nature04193
[7]
McMinn PC (2002) An overview of the evolution of enterovirus 71 and its clinical and public health significance. Fems Microbiol Rev 26: 91–107. doi: 10.1111/j.1574-6976.2002.tb00601.x
[8]
Schmidt NJ, Lennette EH, Ho HH (1974) An apparently new enterovirus isolated from patients with disease of the central nervous system. J Infect Dis 129: 304–309. doi: 10.1093/infdis/129.3.304
[9]
Liu ML, Lee YP, Wang YF, Lei HY, Liu CC, et al. (2005) Type I interferons protect mice against enterovirus 71 infection. J Gen Virol 86: 3263–3269. doi: 10.1099/vir.0.81195-0
[10]
Lei X, Sun Z, Liu X, Jin Q, He B, et al. (2011) Cleavage of the adaptor protein TRIF by enterovirus 71 3C inhibits antiviral responses mediated by Toll-like receptor 3. J Virol 85: 8811–8818. doi: 10.1128/jvi.00447-11
[11]
Lei X, Liu X, Ma Y, Sun Z, Yang Y, et al. (2010) The 3C protein of enterovirus 71 inhibits retinoid acid-inducible gene I-mediated interferon regulatory factor 3 activation and type I interferon responses. J Virol 84: 8051–8061. doi: 10.1128/jvi.02491-09
[12]
Lu J, Yi L, Zhao J, Yu J, Chen Y, et al. (2012) Enterovirus 71 Disrupts Interferon Signaling by reducing the Interferon Receptor I. J Virol 86: 3767–3776. doi: 10.1128/jvi.06687-11
[13]
Lin R, Lacoste J, Nakhaei P, Sun Q, Yang L, et al. (2006) Dissociation of a MAVS/IPS-1/VISA/Cardif-IKKepsilon molecular complex from the mitochondrial outer membrane by hepatitis C virus NS3-4A proteolytic cleavage. J Virol 80: 6072–6083. doi: 10.1128/jvi.02495-05
[14]
Li XD, Sun L, Seth RB, Pineda G, Chen ZJ (2005) Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity. Proc Natl Acad Sci U S A 102: 17717–17722. doi: 10.1073/pnas.0508531102
[15]
Horner SM, Liu HM, Park HS, Briley J, Gale MJ (2011) Mitochondrial-associated endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis C virus. Proc Natl Acad Sci U S A 108: 14590–14595. doi: 10.1073/pnas.1110133108
[16]
Loo YM, Owen DM, Li K, Erickson AK, Johnson CL, et al. (2006) Viral and therapeutic control of IFN-beta promoter stimulator 1 during hepatitis C virus infection. Proc Natl Acad Sci U S A 103: 6001–6006. doi: 10.1073/pnas.0601523103
[17]
Chen Z, Benureau Y, Rijnbrand R, Yi J, Wang T, et al. (2007) GB virus B disrupts RIG-I signaling by NS3/4A-mediated cleavage of the adaptor protein MAVS. J Virol 81: 964–976. doi: 10.1128/jvi.02076-06
[18]
Yang Y, Liang Y, Qu L, Chen Z, Yi M, et al. (2007) Disruption of innate immunity due to mitochondrial targeting of a picornaviral protease precursor. Proc Natl Acad Sci U S A 104: 7253–7258. doi: 10.1073/pnas.0611506104
[19]
Mukherjee A, Morosky SA, Delorme-Axford E, Dybdahl-Sissoko N, Oberste MS, et al. (2011) The coxsackievirus B 3C protease cleaves MAVS and TRIF to attenuate host type I interferon and apoptotic signaling. PLoS Pathog 7: e1001311. doi: 10.1371/journal.ppat.1001311
[20]
Drahos J, Racaniello VR (2009) Cleavage of IPS-1 in cells infected with human rhinovirus. J Virol 83: 11581–11587. doi: 10.1128/jvi.01490-09
[21]
Chen SC, Chang LY, Wang YW, Chen YC, Weng KF, et al. (2011) Sumoylation-promoted enterovirus 71 3C degradation correlates with a reduction in viral replication and cell apoptosis. J Biol Chem 286: 31373–31384. doi: 10.1074/jbc.m111.254896
[22]
Chen LC, Shyu HW, Chen SH, Lei HY, Yu CK, et al. (2006) Enterovirus 71 infection induces Fas ligand expression and apoptosis of Jurkat cells. J Med Virol 78: 780–786. doi: 10.1002/jmv.20623
[23]
Chang SC, Lin JY, Lo LY, Li ML, Shih SR (2004) Diverse apoptotic pathways in enterovirus 71-infected cells. J Neurovirol 10: 338–349. doi: 10.1080/13550280490521032
[24]
Kuo RL, Kung SH, Hsu YY, Liu WT (2002) Infection with enterovirus 71 or expression of its 2A protease induces apoptotic cell death. J Gen Virol 83: 1367–1376.
[25]
Li ML, Hsu TA, Chen TC, Chang SC, Lee JC, et al. (2002) The 3C protease activity of enterovirus 71 induces human neural cell apoptosis. Virology 293: 386–395. doi: 10.1006/viro.2001.1310
[26]
Barral PM, Sarkar D, Fisher PB, Racaniello VR (2009) RIG-I is cleaved during picornavirus infection. Virology 391: 171–176. doi: 10.1016/j.virol.2009.06.045
[27]
Barral PM, Morrison JM, Drahos J, Gupta P, Sarkar D, et al. (2007) MDA-5 is cleaved in poliovirus-infected cells. J Virol 81: 3677–3684. doi: 10.1128/jvi.01360-06
[28]
Papon L, Oteiza A, Imaizumi T, Kato H, Brocchi E, et al. (2009) The viral RNA recognition sensor RIG-I is degraded during encephalomyocarditis virus (EMCV) infection. Virology 393: 311–318. doi: 10.1016/j.virol.2009.08.009
[29]
You F, Sun H, Zhou X, Sun W, Liang S, et al. (2009) PCBP2 mediates degradation of the adaptor MAVS via the HECT ubiquitin ligase AIP4. 10: 1300–1308. doi: 10.1038/ni.1815
[30]
Zhong B, Zhang Y, Tan B, Liu TT, Wang YY, et al. (2010) The E3 ubiquitin ligase RNF5 targets virus-induced signaling adaptor for ubiquitination and degradation. J Immunol 184: 6249–6255. doi: 10.4049/jimmunol.0903748
[31]
Wei C, Ni C, Song T, Liu Y, Yang X, et al. (2010) The hepatitis B virus X protein disrupts innate immunity by downregulating mitochondrial antiviral signaling protein. J Immunol 185: 1158–1168. doi: 10.4049/jimmunol.0903874
[32]
Arimoto K, Takahashi H, Hishiki T, Konishi H, Fujita T, et al. (2007) Negative regulation of the RIG-I signaling by the ubiquitin ligase RNF125. Proc Natl Acad Sci USA 104: 7500–7505. doi: 10.1073/pnas.0611551104
[33]
Neznanov N, Dragunsky EM, Chumakov KM, Neznanova L, Wek RC, et al. (2008) Different effect of proteasome inhibition on vesicular stomatitis virus and poliovirus replication. PLoS One 3: e1887 doi:10.1371/journal.pone.0001887.
[34]
Si X, Gao G, Wong J, Wang Y, Zhang J, et al. (2008) Ubiquitination is required for effective replication of coxsackievirus B3. PLoS One 3: e2585 doi:10.1371/journal.pone.0002585.
[35]
Si X, McManus BM, Zhang J, Yuan J, Cheung C, et al. (2005) Pyrrolidine dithiocarbamate reduces coxsackievirus B3 replication through inhibition of the ubiquitin-proteasome pathway. J Virol 79: 8014–8023. doi: 10.1128/jvi.79.13.8014-8023.2005
[36]
Koshiba T, Yasukawa K, Yanagi Y, Kawabata S (2011) Mitochondrial membrane potential is required for MAVS-mediated antiviral signaling. Sci Signal 4: a7. doi: 10.1126/scisignal.2001147
[37]
Castanier C, Garcin D, Vazquez A, Arnoult D (2010) Mitochondrial dynamics regulate the RIG-I-like receptor antiviral pathway. Embo Rep 11: 133–138. doi: 10.1038/embor.2009.258
[38]
Rahmani Z, Huh KW, Lasher R, Siddiqui A (2000) Hepatitis B virus X protein colocalizes to mitochondria with a human voltage-dependent anion channel, HVDAC3, and alters its transmembrane potential. J Virol 74: 2840–2846. doi: 10.1128/jvi.74.6.2840-2846.2000
[39]
Nomura-Takigawa Y, Nagano-Fujii M, Deng L, Kitazawa S, Ishido S, et al. (2006) Non-structural protein 4A of Hepatitis C virus accumulates on mitochondria and renders the cells prone to undergoing mitochondria-mediated apoptosis. J Gen Virol 87: 1935–1945. doi: 10.1099/vir.0.81701-0
[40]
Madan V, Castello A, Carrasco L (2008) Viroporins from RNA viruses induce caspase-dependent apoptosis. Cell Microbiol 10: 437–451. doi: 10.1111/j.1462-5822.2007.01057.x
[41]
Wieckowski MR, Giorgi C, Lebiedzinska M, Duszynski J, Pinton P (2009) Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells. Nat Protoc 4: 1582–1590. doi: 10.1038/nprot.2009.151
[42]
Weng KF, Li ML, Hung CT, Shih SR (2009) Enterovirus 71 3C protease cleaves a novel target CstF-64 and inhibits cellular polyadenylation. PLoS Pathog 5: e1000593 doi:10.1371/journal.ppat.1000593.
[43]
Gradi A, Foeger N, Strong R, Svitkin YV, Sonenberg N, et al. (2004) Cleavage of eukaryotic translation initiation factor 4GII within foot-and-mouth disease virus-infected cells: identification of the L-protease cleavage site in vitro. J Virol 78: 3271–3278. doi: 10.1128/jvi.78.7.3271-3278.2004
[44]
Svitkin YV, Gradi A, Imataka H, Morino S, Sonenberg N (1999) Eukaryotic initiation factor 4GII (eIF4GII), but not eIF4GI, cleavage correlates with inhibition of host cell protein synthesis after human rhinovirus infection. J Virol 73: 3467–3472. doi: 10.1073/pnas.95.19.11089
[45]
Glaser W, Skern T (2000) Extremely efficient cleavage of eIF4G by picornaviral proteinases L and 2A in vitro. Febs Lett 480: 151–155. doi: 10.1016/s0014-5793(00)01928-1
[46]
Martinez-Abarca F, Alonso MA, Carrasco L (1993) High level expression in Escherichia coli cells and purification of poliovirus protein 2Apro. J Gen Virol 74(12): 2645–2652. doi: 10.1099/0022-1317-74-12-2645
[47]
Castello A, Alvarez E, Carrasco L (2011) The multifaceted poliovirus 2A protease: regulation of gene expression by picornavirus proteases. J Biomed Biotechnol 2011: 369648. doi: 10.1155/2011/369648
[48]
Novoa I, Martinez-Abarca F, Fortes P, Ortin J, Carrasco L (1997) Cleavage of p220 by purified poliovirus 2A(pro) in cell-free systems: effects on translation of capped and uncapped mRNAs. Biochemistry-Us 36: 7802–7809. doi: 10.1021/bi9631172
[49]
Yuan ZG, Zhang JP, Chu YW, Wang Y, Xu W, et al. (2005) Expression of target gene in eukaryotic cells driven by prokaryotic T7 promoter and its RNA polymerase. Sheng Wu Gong Cheng Xue Bao 21: 182–186.
[50]
Zheng H, Tian H, Jin Y, Wu J, Shang Y, et al. (2009) Development of a hamster kidney cell line expressing stably T7 RNA polymerase using retroviral gene transfer technology for efficient rescue of infectious foot-and-mouth disease virus. J Virol Methods 156: 129–137. doi: 10.1016/j.jviromet.2008.11.010
[51]
Devaney MA, Vakharia VN, Lloyd RE, Ehrenfeld E, Grubman MJ (1988) Leader protein of foot-and-mouth disease virus is required for cleavage of the p220 component of the cap-binding protein complex. J Virol 62: 4407–4409.
[52]
Buchholz UJ, Finke S, Conzelmann KK (1999) Generation of bovine respiratory syncytial virus (BRSV) from cDNA: BRSV NS2 is not essential for virus replication in tissue culture, and the human RSV leader region acts as a functional BRSV genome promoter. J Virol 73: 251–259.
[53]
Yang CH, Li HC, Jiang JG, Hsu CF, Wang YJ, et al. (2010) Enterovirus type 71 2A protease functions as a transcriptional activator in yeast. J Biomed Sci 17: 65. doi: 10.1186/1423-0127-17-65
[54]
Wang QM, Sommergruber W, Johnson RB (1997) Cleavage specificity of human rhinovirus-2 2A protease for peptide substrates. Biochem Biophys Res Commun 235: 562–566. doi: 10.1006/bbrc.1997.6830
[55]
Skern T, Sommergruber W, Auer H, Volkmann P, Zorn M, et al. (1991) Substrate requirements of a human rhinoviral 2A proteinase. Virology 181: 46–54. doi: 10.1016/0042-6822(91)90468-q
[56]
Sommergruber W, Ahorn H, Zophel A, Maurer-Fogy I, Fessl F, et al. (1992) Cleavage specificity on synthetic peptide substrates of human rhinovirus 2 proteinase 2A. J Biol Chem 267: 22639–22644.
[57]
Zeng W, Sun L, Jiang X, Chen X, Hou F, et al. (2010) Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 141: 315–330. doi: 10.1016/j.cell.2010.03.029
[58]
Zeng W, Xu M, Liu S, Sun L, Chen ZJ (2009) Key role of Ubc5 and lysine-63 polyubiquitination in viral activation of IRF3. Mol Cell 36: 315–325. doi: 10.1016/j.molcel.2009.09.037
[59]
Yoneyama M, Fujita T (2009) RNA recognition and signal transduction by RIG-I-like receptors. Immunol Rev 227: 54–65. doi: 10.1111/j.1600-065x.2008.00727.x
[60]
Kumar M, Jung SY, Hodgson AJ, Madden CR, Qin J, et al. (2011) Hepatitis B Virus Regulatory HBx Protein Binds to Adaptor Protein IPS-1 and Inhibits the Activation of Beta Interferon. J Virol 85: 987–995. doi: 10.1128/jvi.01825-10
[61]
Miller DJ, Schwartz MD, Ahlquist P (2001) Flock house virus RNA replicates on outer mitochondrial membranes in Drosophila cells. J Virol 75: 11664–11676. doi: 10.1128/jvi.75.23.11664-11676.2001
[62]
Morrison JM, Racaniello VR (2009) Proteinase 2Apro is essential for enterovirus replication in type I interferon-treated cells. J Virol 83: 4412–4422. doi: 10.1128/jvi.02177-08
[63]
Peters K, Chattopadhyay S, Sen GC (2008) IRF-3 activation by Sendai virus infection is required for cellular apoptosis and avoidance of persistence. J Virol 82: 3500–3508. doi: 10.1128/jvi.02536-07
[64]
Sun W, Li Y, Chen L, Chen H, You F, et al. (2009) ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. Proc Natl Acad Sci USA 106: 8653–8658. doi: 10.1073/pnas.0900850106
[65]
Iwamura T, Yoneyama M, Yamaguchi K, Suhara W, Mori W, et al. (2001) Induction of IRF-3/-7 kinase and NF-kappaB in response to double-stranded RNA and virus infection: common and unique pathways. Genes Cells 6: 375–388. doi: 10.1046/j.1365-2443.2001.00426.x
[66]
Bozidis P, Williamson CD, Colberg-Poley AM (2007) Isolation of endoplasmic reticulum, mitochondria, and mitochondria-associated membrane fractions from transfected cells and from human cytomegalovirus-infected primary fibroblasts. Curr Protoc Cell Biol Chapter 3: 3–27. doi: 10.1002/0471143030.cb0327s37
[67]
Kristian T, Hopkins IB, McKenna MC, Fiskum G (2006) Isolation of mitochondria with high respiratory control from primary cultures of neurons and astrocytes using nitrogen cavitation. J Neurosci Methods 152: 136–143. doi: 10.1016/j.jneumeth.2005.08.018
[68]
Cui S, Wang J, Fan T, Qin B, Guo L, et al. (2011) Crystal structure of human enterovirus 71 3C protease. J Mol Biol 408: 449–461. doi: 10.1016/j.jmb.2011.03.007