The TRAIL (TNF-related apoptosis inducing ligand) death receptors (DRs) of the tumor necrosis factor receptor superfamily (TNFRSF) can promote apoptosis and regulate antiviral immunity by maintaining immune homeostasis during infection. In turn, human cytomegalovirus (HCMV) expresses immunomodulatory proteins that down-regulate cell surface expression of TNFRSF members as well as poliovirus receptor-related proteins in an effort to inhibit host immune effector pathways that would lead to viral clearance. The UL141 glycoprotein of human cytomegalovirus inhibits host defenses by blocking cell surface expression of TRAIL DRs (by retention in ER) and poliovirus receptor CD155, a nectin-like Ig-fold molecule. Here we show that the immunomodulatory function of HCMV UL141 is associated with its ability to bind diverse proteins, while utilizing at least two distinct binding sites to selectively engage TRAIL DRs or CD155. Binding studies revealed high affinity interaction of UL141 with both TRAIL-R2 and CD155 and low affinity binding to TRAIL-R1. We determined the crystal structure of UL141 bound to TRAIL-R2 at 2.1 ? resolution, which revealed that UL141 forms a homodimer that engages two TRAIL-R2 monomers 90° apart to form a heterotetrameric complex. Our structural and biochemical data reveal that UL141 utilizes its Ig-domain to facilitate non-canonical death receptor interactions while UL141 partially mimics the binding site of TRAIL on TRAIL-R2, which we found to be distinct from that of CD155. Moreover, UL141 also binds to an additional surface patch on TRAIL-R2 that is distinct from the TRAIL binding site. Therefore, the breadth of UL141-mediated effects indicates that HCMV has evolved sophisticated strategies to evade the immune system by modulating multiple effector pathways.
References
[1]
Sedy JR, Spear PG, Ware CF (2008) Cross-regulation between herpesviruses and the TNF superfamily members. Nat Rev Immunol 8: 861–873. doi: 10.1038/nri2434
[2]
Baumgarth N, Choi YS, Rothaeusler K, Yang Y, Herzenberg LA (2008) B cell lineage contributions to antiviral host responses. Curr Top Microbiol Immunol 319: 41–61. doi: 10.1007/978-3-540-73900-5_3
[3]
Schleiss MR (2007) Prospects for development and potential impact of a vaccine against congenital cytomegalovirus (CMV) infection. J Pediatr 151: 564–570. doi: 10.1016/j.jpeds.2007.07.015
[4]
Cha TA, Tom E, Kemble GW, Duke GM, Mocarski ES, et al. (1996) Human cytomegalovirus clinical isolates carry at least 19 genes not found in laboratory strains. J Virol 70: 78–83.
[5]
Dolan A, Cunningham C, Hector RD, Hassan-Walker AF, Lee L, et al. (2004) Genetic content of wild-type human cytomegalovirus. J Gen Virol 85: 1301–1312. doi: 10.1099/vir.0.79888-0
[6]
Loewendorf A, Benedict CA (2010) Modulation of host innate and adaptive immune defenses by cytomegalovirus: timing is everything. J Intern Med 267: 483–501. doi: 10.1111/j.1365-2796.2010.02220.x
[7]
Smith CA, Farrah T, Goodwin RG (1994) The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell 76: 959–962. doi: 10.1016/0092-8674(94)90372-7
[8]
Cha TA, Kao K, Zhao J, Fast PE, Mendelman PM, et al. (2000) Genotypic stability of cold-adapted influenza virus vaccine in an efficacy clinical trial. J Clin Microbiol 38: 839–845.
[9]
Ware CF, Sedy JR (2011) TNF Superfamily Networks: bidirectional and interference pathways of the herpesvirus entry mediator (TNFSF14). Curr Opin Immunol 23: 627–631. doi: 10.1016/j.coi.2011.08.008
[10]
Benedict CA, Banks TA, Ware CF (2003) Death and survival: viral regulation of TNF signaling pathways. Curr Opin Immunol 15: 59–65. doi: 10.1016/s0952-7915(02)00018-3
[11]
Roy CR, Mocarski ES (2007) Pathogen subversion of cell-intrinsic innate immunity. Nat Immunol 8: 1179–1187. doi: 10.1038/ni1528
[12]
Smith W, Tomasec P, Aicheler R, Loewendorf A, Nem?ovi?ová I, et al. (2013) Human cytomegalovirus UL141 targets the TRAIL death receptors to inhibit host innate defenses. Cell Host & Microbe 15 In press. doi: 10.1016/j.chom.2013.02.003
[13]
Prod'homme V, Sugrue DM, Stanton RJ, Nomoto A, Davies J, et al. (2010) Human cytomegalovirus UL141 promotes efficient downregulation of the natural killer cell activating ligand CD112. J Gen Virol 91: 2034–2039. doi: 10.1099/vir.0.021931-0
[14]
Bottino C, Castriconi R, Pende D, Rivera P, Nanni M, et al. (2003) Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J Exp Med 198: 557–567. doi: 10.1084/jem.20030788
[15]
Fuchs A, Cella M, Giurisato E, Shaw AS, Colonna M (2004) Cutting edge: CD96 (tactile) promotes NK cell-target cell adhesion by interacting with the poliovirus receptor (CD155). J Immunol 172: 3994–3998. doi: 10.4049/jimmunol.172.7.3994
[16]
Tomasec P, Wang EC, Davison AJ, Vojtesek B, Armstrong M, et al. (2005) Downregulation of natural killer cell-activating ligand CD155 by human cytomegalovirus UL141. Nat Immunol 6: 181–188. doi: 10.1038/ni1156
[17]
Smyth MJ, Cretney E, Takeda K, Wiltrout RH, Sedger LM, et al. (2001) Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) contributes to interferon gamma-dependent natural killer cell protection from tumor metastasis. J Exp Med 193: 661–670. doi: 10.1084/jem.193.6.661
[18]
Johnsen MG, Rasmussen OF, Albrechtsen M, Borkhardt B (1991) In vivo expression of the 29000 Mr protein from RNA-2 of pea early browning tobravirus. J Gen Virol 72: 1223–1227. doi: 10.1099/0022-1317-72-6-1223
[19]
Kayagaki N, Yamaguchi N, Nakayama M, Kawasaki A, Akiba H, et al. (1999) Involvement of TNF-related apoptosis-inducing ligand in human CD4+ T cell-mediated cytotoxicity. J Immunol 162: 2639–2647.
[20]
Cha SS, Sung BJ, Kim YA, Song YL, Kim HJ, et al. (2000) Crystal structure of TRAIL-DR5 complex identifies a critical role of the unique frame insertion in conferring recognition specificity. J Biol Chem 275: 31171–31177. doi: 10.1074/jbc.m004414200
[21]
Mongkolsapaya J, Grimes JM, Chen N, Xu XN, Stuart DI, et al. (1999) Structure of the TRAIL-DR5 complex reveals mechanisms conferring specificity in apoptotic initiation. Nat Struct Biol 6: 1048–1053.
[22]
Hymowitz SG, Christinger HW, Fuh G, Ultsch M, O'Connell M, et al. (1999) Triggering cell death: the crystal structure of Apo2L/TRAIL in a complex with death receptor 5. Mol Cell 4: 563–571. doi: 10.1016/s1097-2765(00)80207-5
[23]
Banner DW, D'Arcy A, Janes W, Gentz R, Schoenfeld HJ, et al. (1993) Crystal structure of the soluble human 55 kd TNF receptor-human TNF beta complex: implications for TNF receptor activation. Cell 73: 431–445. doi: 10.1016/0092-8674(93)90132-a
[24]
Naismith JH, Brandhuber BJ, Devine TQ, Sprang SR (1996) Seeing double: crystal structures of the type I TNF receptor. J Mol Recognit 9: 113–117. doi: 10.1002/(sici)1099-1352(199603)9:2<113::aid-jmr253>3.0.co;2-h
[25]
Li Y, Wang H, Wang Z, Makhija S, Buchsbaum D, et al. (2006) Inducible resistance of tumor cells to tumor necrosis factor-related apoptosis-inducing ligand receptor 2-mediated apoptosis by generation of a blockade at the death domain function. Cancer Res 66: 8520–8528. doi: 10.1158/0008-5472.can-05-4364
[26]
Fellouse FA, Li B, Compaan DM, Peden AA, Hymowitz SG, et al. (2005) Molecular recognition by a binary code. J Mol Biol 348: 1153–1162. doi: 10.1016/j.jmb.2005.03.041
[27]
Lam J, Nelson CA, Ross FP, Teitelbaum SL, Fremont DH (2001) Crystal structure of the TRANCE/RANKL cytokine reveals determinants of receptor-ligand specificity. J Clin Invest 108: 971–979. doi: 10.1172/jci13890
[28]
Goh CR, Loh CS, Porter AG (1991) Aspartic acid 50 and tyrosine 108 are essential for receptor binding and cytotoxic activity of tumour necrosis factor beta (lymphotoxin). Protein Eng 4: 785–791. doi: 10.1093/protein/4.7.785
[29]
Goh CR, Porter AG (1991) Structural and functional domains in human tumour necrosis factors. Protein Eng 4: 385–389. doi: 10.1093/protein/4.4.385
[30]
Schneider P, Thome M, Burns K, Bodmer JL, Hofmann K, et al. (1997) TRAIL receptors 1 (DR4) and 2 (DR5) signal FADD-dependent apoptosis and activate NF-kappaB. Immunity 7: 831–836. doi: 10.1016/s1074-7613(00)80401-x
[31]
Yamagishi J, Kawashima H, Matsuo N, Ohue M, Yamayoshi M, et al. (1990) Mutational analysis of structure–activity relationships in human tumor necrosis factor-alpha. Protein Eng 3: 713–719. doi: 10.1093/protein/3.8.713
[32]
Stengel KF, Harden-Bowles K, Yu X, Rouge L, Yin J, et al. (2012) Structure of TIGIT immunoreceptor bound to poliovirus receptor reveals a cell-cell adhesion and signaling mechanism that requires cis-trans receptor clustering. P Natl Acad Sci USA 109: 5399–5404. doi: 10.1073/pnas.1120606109
[33]
Compaan DM, Gonzalez LC, Tom I, Loyet KM, Eaton D, et al. (2005) Attenuating lymphocyte activity: the crystal structure of the BTLA-HVEM complex. J Biol Chem 280: 39553–39561. doi: 10.1074/jbc.m507629200
[34]
van der Sloot AM, Tur V, Szegezdi E, Mullally MM, Cool RH, et al. (2006) Designed tumor necrosis factor-related apoptosis-inducing ligand variants initiating apoptosis exclusively via the DR5 receptor. P Natl Acad Sci USA 103: 8634–8639. doi: 10.1073/pnas.0510187103
[35]
Sato K, Hida S, Takayanagi H, Yokochi T, Kayagaki N, et al. (2001) Antiviral response by natural killer cells through TRAIL gene induction by IFN-alpha/beta. Eur J Immunol 31: 3138–3146. doi: 10.1002/1521-4141(200111)31:11<3138::aid-immu3138>3.0.co;2-b
[36]
Muller S, Zocher G, Steinle A, Stehle T (2010) Structure of the HCMV UL16-MICB complex elucidates select binding of a viral immunoevasin to diverse NKG2D ligands. Plos Pathog 6: e1000723. doi: 10.1371/journal.ppat.1000723
[37]
Stebbins CE, Galan JE (2001) Structural mimicry in bacterial virulence. Nature 412: 701–705. doi: 10.1038/35089000
[38]
Alcami A (2003) Viral mimicry of cytokines, chemokines and their receptors. Nat Rev Immunol 3: 36–50. doi: 10.1038/nri980
[39]
Vales-Gomez M, Browne H, Reyburn HT (2003) Expression of the UL16 glycoprotein of Human Cytomegalovirus protects the virus-infected cell from attack by natural killer cells. BMC Immunol 4: 4.
[40]
Alexander JM, Nelson CA, van Berkel V, Lau EK, Studts JM, et al. (2002) Structural basis of chemokine sequestration by a herpesvirus decoy receptor. Cell 111: 343–356. doi: 10.1016/s0092-8674(02)01007-3
[41]
Carfi A, Smith CA, Smolak PJ, McGrew J, Wiley DC (1999) Structure of a soluble secreted chemokine inhibitor vCCI (p35) from cowpox virus. P Natl Acad Sci USA 96: 12379–12383. doi: 10.1073/pnas.96.22.12379
[42]
Holm L, Rosenstrom P (2010) Dali server: conservation mapping in 3D. Nucleic Acids Res 38: W545–549. doi: 10.1093/nar/gkq366
[43]
Cheung TC, Oborne LM, Steinberg MW, Macauley MG, Fukuyama S, et al. (2009) T cell intrinsic heterodimeric complexes between HVEM and BTLA determine receptivity to the surrounding microenvironment. J Immunol 183: 7286–7296. doi: 10.4049/jimmunol.0902490
[44]
Cheung TC, Humphreys IR, Potter KG, Norris PS, Shumway HM, et al. (2005) Evolutionarily divergent herpesviruses modulate T cell activation by targeting the herpesvirus entry mediator cosignaling pathway. P Natl Acad Sci USA 102: 13218–13223. doi: 10.1073/pnas.0506172102
[45]
Battye TG, Kontogiannis L, Johnson O, Powell HR, Leslie AG (2011) iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr D67: 271–281. doi: 10.1107/s0907444910048675
[46]
Evans P (2006) Scaling and assessment of data quality. Acta Crystallogr D62: 72–82. doi: 10.1107/s0907444905036693
[47]
Liu Q, Zhang Z, Hendrickson WA (2011) Multi-crystal anomalous diffraction for low-resolution macromolecular phasing. Acta Crystallogr D67: 45–59. doi: 10.1107/s0907444910046573
[48]
Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A64: 112–122. doi: 10.1107/s0108767307043930
Cowtan KD, Zhang KY (1999) Density modification for macromolecular phase improvement. Prog Biophys Mol Biol 72: 245–270. doi: 10.1016/s0079-6107(99)00008-5
[51]
Panjikar S, Parthasarathy V, Lamzin VS, Weiss MS, Tucker PA (2005) Auto-rickshaw: an automated crystal structure determination platform as an efficient tool for the validation of an X-ray diffraction experiment. Acta Crystallogr D61: 449–457. doi: 10.1107/s0907444905001307
[52]
Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D60: 2126–2132. doi: 10.1107/s0907444904019158
Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D53: 240–255. doi: 10.1107/s0907444996012255
[55]
Lovell SC, Davis IW, Arendall WB 3rd, de Bakker PI, Word JM, et al. (2003) Structure validation by Calpha geometry: phi,psi and Cbeta deviation. Proteins 50: 437–450. doi: 10.1002/prot.10286
[56]
Laskowski RA (2009) PDBsum new things. Nucleic Acids Res 37: D355–359. doi: 10.1093/nar/gkn860