Pneumococcal carriage is both immunising and a pre-requisite for mucosal and systemic disease. Murine models of pneumococcal colonisation show that IL-17A-secreting CD4+ T-cells (Th-17 cells) are essential for clearance of pneumococci from the nasopharynx. Pneumococcal-responding IL-17A-secreting CD4+ T-cells have not been described in the adult human lung and it is unknown whether they can be elicited by carriage and protect the lung from pneumococcal infection. We investigated the direct effect of experimental human pneumococcal nasal carriage (EHPC) on the frequency and phenotype of cognate CD4+ T-cells in broncho-alveolar lavage and blood using multi-parameter flow cytometry. We then examined whether they could augment ex vivo alveolar macrophage killing of pneumococci using an in vitro assay. We showed that human pneumococcal carriage leads to a 17.4-fold (p = 0.007) and 8-fold (p = 0.003) increase in the frequency of cognate IL-17A+ CD4+ T-cells in BAL and blood, respectively. The phenotype with the largest proportion were TNF+/IL-17A+ co-producing CD4+ memory T-cells (p<0.01); IFNγ+ CD4+ memory T-cells were not significantly increased following carriage. Pneumococci could stimulate large amounts of IL-17A protein from BAL cells in the absence of carriage but in the presence of cognate CD4+ memory T-cells, IL-17A protein levels were increased by a further 50%. Further to this we then show that alveolar macrophages, which express IL-17A receptors A and C, showed enhanced killing of opsonised pneumococci when stimulated with rhIL-17A (p = 0.013). Killing negatively correlated with RC (r = ?0.9, p = 0.017) but not RA expression. We conclude that human pneumococcal carriage can increase the proportion of lung IL-17A-secreting CD4+ memory T-cells that may enhance innate cellular immunity against pathogenic challenge. These pathways may be utilised to enhance vaccine efficacy to protect the lung against pneumonia.
References
[1]
Bogaert D, De Groot R, Hermans PW (2004) Streptococcus pneumoniae colonisation: the key to pneumococcal disease. Lancet Infect Dis 4: 144–154. doi: 10.1016/s1473-3099(04)00938-7
[2]
Ridda I, Macintyre CR, Lindley R, McIntyre PB, Brown M, et al. (2010) Lack of pneumococcal carriage in the hospitalised elderly. Vaccine 28: 3902–3904. doi: 10.1016/j.vaccine.2010.03.073
[3]
Neill DR, Fernandes VE, Wisby L, Haynes AR, Ferreira DM, et al. (2012) T regulatory cells control susceptibility to invasive pneumococcal pneumonia in mice. PLoS Pathog 8: e1002660. doi: 10.1371/journal.ppat.1002660
[4]
Mizgerd JP (2012) Respiratory Infection and the Impact of Pulmonary Immunity on Lung Health and Disease. Am J Respir Crit Care Med 186: 824–9. doi: 10.1164/rccm.201206-1063pp
[5]
Melegaro A, Edmunds WJ, Pebody R, Miller E, George R (2006) The current burden of pneumococcal disease in England and Wales. J Infect 52: 37–48. doi: 10.1016/j.jinf.2005.02.008
Trzcinski K, Thompson CM, Srivastava A, Basset A, Malley R, et al. (2008) Protection against nasopharyngeal colonization by Streptococcus pneumoniae is mediated by antigen-specific CD4+ T cells. Infect Immun 76: 2678–2684. doi: 10.1128/iai.00141-08
[8]
Cohen JM, Khandavilli S, Camberlein E, Hyams C, Baxendale HE, et al. (2011) Protective contributions against invasive Streptococcus pneumoniae pneumonia of antibody and Th17-cell responses to nasopharyngeal colonisation. PLoS One 6: e25558. doi: 10.1371/journal.pone.0025558
[9]
Richards L, Ferreira DM, Miyaji EN, Andrew PW, Kadioglu A (2010) The immunising effect of pneumococcal nasopharyngeal colonisation; protection against future colonisation and fatal invasive disease. Immunobiology 215: 251–263. doi: 10.1016/j.imbio.2009.12.004
[10]
Kadioglu A, Gingles NA, Grattan K, Kerr A, Mitchell TJ, et al. (2000) Host cellular immune response to pneumococcal lung infection in mice. Infect Immun 68: 492–501. doi: 10.1128/iai.68.2.492-501.2000
[11]
Kadioglu A, Coward W, Colston MJ, Hewitt CR, Andrew PW (2004) CD4-T-lymphocyte interactions with pneumolysin and pneumococci suggest a crucial protective role in the host response to pneumococcal infection. Infect Immun 72: 2689–2697. doi: 10.1128/iai.72.5.2689-2697.2004
[12]
LeMessurier K, Hacker H, Tuomanen E, Redecke V (2010) Inhibition of T cells provides protection against early invasive pneumococcal disease. Infect Immun 78: 5287–5294. doi: 10.1128/iai.00431-10
[13]
Zhang Q, Bagrade L, Bernatoniene J, Clarke E, Paton JC, et al. (2007) Low CD4 T cell immunity to pneumolysin is associated with nasopharyngeal carriage of pneumococci in children. J Infect Dis 195: 1194–1202. doi: 10.1086/512617
[14]
Kemp K, Bruunsgaard H, Skinhoj P, Klarlund Pedersen B (2002) Pneumococcal infections in humans are associated with increased apoptosis and trafficking of type 1 cytokine-producing T cells. Infect Immun 70: 5019–5025. doi: 10.1128/iai.70.9.5019-5025.2002
[15]
Chen J, Deng Y, Zhao J, Luo Z, Peng W, et al. (2010) The polymorphism of IL-17 G-152A was associated with childhood asthma and bacterial colonization of the hypopharynx in bronchiolitis. J Clin Immunol 30: 539–545. doi: 10.1007/s10875-010-9391-8
[16]
Nakada TA, Russell JA, Boyd JH, Walley KR (2011) IL17A genetic variation is associated with altered susceptibility to Gram-positive infection and mortality of severe sepsis. Crit Care 15: R254. doi: 10.1186/cc10515
[17]
Lundgren A, Bhuiyan TR, Novak D, Kaim J, Reske A, et al. (2012) Characterization of Th17 responses to Streptococcus pneumoniae in humans: comparisons between adults and children in a developed and a developing country. Vaccine 30: 3897–3907. doi: 10.1016/j.vaccine.2012.03.082
[18]
Lu YJ, Gross J, Bogaert D, Finn A, Bagrade L, et al. (2008) Interleukin-17A mediates acquired immunity to pneumococcal colonization. PLoS Pathog 4: e1000159. doi: 10.1371/journal.ppat.1000159
[19]
Glennie SJ, Sepako E, Mzinza D, Harawa V, Miles DJ, et al. (2011) Impaired CD4 T cell memory response to Streptococcus pneumoniae precedes CD4 T cell depletion in HIV-infected Malawian adults. PLoS One 6: e25610. doi: 10.1371/journal.pone.0025610
[20]
Pido-Lopez J, Kwok WW, Mitchell TJ, Heyderman RS, Williams NA (2011) Acquisition of pneumococci specific effector and regulatory Cd4+ T cells localising within human upper respiratory-tract mucosal lymphoid tissue. PLoS Pathog 7: e1002396. doi: 10.1371/journal.ppat.1002396
[21]
Jambo KC, Sepako E, Fullerton DG, Mzinza D, Glennie S, et al. (2011) Bronchoalveolar CD4+ T cell responses to respiratory antigens are impaired in HIV-infected adults. Thorax 66: 375–382. doi: 10.1136/thx.2010.153825
[22]
Brenchley JM, Paiardini M, Knox KS, Asher AI, Cervasi B, et al. (2008) Differential Th17 CD4 T-cell depletion in pathogenic and nonpathogenic lentiviral infections. Blood 112: 2826–2835. doi: 10.1182/blood-2008-05-159301
[23]
Kolls JK, Khader SA (2010) The role of Th17 cytokines in primary mucosal immunity. Cytokine Growth Factor Rev 21: 443–448. doi: 10.1016/j.cytogfr.2010.11.002
[24]
Kao CY, Chen Y, Thai P, Wachi S, Huang F, et al. (2004) IL-17 markedly up-regulates beta-defensin-2 expression in human airway epithelium via JAK and NF-kappaB signaling pathways. J Immunol 173: 3482–3491. doi: 10.4049/jimmunol.173.5.3482
[25]
Rangel-Moreno J, Carragher DM, de la Luz Garcia-Hernandez M, Hwang JY, Kusser K, et al. (2011) The development of inducible bronchus-associated lymphoid tissue depends on IL-17. Nat Immunol 12: 639–646. doi: 10.1038/ni.2053
[26]
Jaffar Z, Ferrini ME, Herritt LA, Roberts K (2009) Cutting edge: lung mucosal Th17-mediated responses induce polymeric Ig receptor expression by the airway epithelium and elevate secretory IgA levels. J Immunol 182: 4507–4511. doi: 10.4049/jimmunol.0900237
[27]
Kryczek I, Zhao E, Liu Y, Wang Y, Vatan L, et al. (2011) Human TH17 cells are long-lived effector memory cells. Sci Transl Med 3: 104ra100. doi: 10.1126/scitranslmed.3002949
[28]
Wright AK, Ferreira DM, Gritzfeld JF, Wright AD, Armitage K, et al. (2012) Human nasal challenge with Streptococcus pneumoniae is immunising in the absence of carriage. PLoS Pathog 8: e1002622. doi: 10.1371/journal.ppat.1002622
[29]
Gritzfeld JF, Wright AD, Collins AM, Pennington SH, Wright AKA, et al. (2012) Experimental human pneumococcal carriage. Journal of Visualised Experiments 19: 464–70. doi: 10.3791/50115
[30]
Silverpil E, Wright AK, Hansson M, Jirholt P, Henningsson L, et al. (2013) Negative feedback on IL-23 exerted by IL-17A during pulmonary inflammation. Innate Immun [epub ahead of print]. doi: 10.1177/1753425912470470
[31]
Romero-Steiner S, Frasch C, Concepcion N, Goldblatt D, Kayhty H, et al. (2003) Multilaboratory evaluation of a viability assay for measurement of opsonophagocytic antibodies specific to the capsular polysaccharides of Streptococcus pneumoniae. Clin Diagn Lab Immunol 10: 1019–1024. doi: 10.1128/cdli.10.6.1019-1024.2003
[32]
Wah J, Wellek A, Frankenberger M, Unterberger P, Welsch U, et al. (2006) Antimicrobial peptides are present in immune and host defense cells of the human respiratory and gastrointestinal tracts. Cell Tissue Res 324: 449–456. doi: 10.1007/s00441-005-0127-7
[33]
Mureithi MW, Finn A, Ota MO, Zhang Q, Davenport V, et al. (2009) T cell memory response to pneumococcal protein antigens in an area of high pneumococcal carriage and disease. J Infect Dis 200: 783–793. doi: 10.1086/605023
[34]
Aslam A, Chapel H, Ogg G (2011) Direct ex-vivo evaluation of pneumococcal specific T-cells in healthy adults. PLoS One 6: e25367. doi: 10.1371/journal.pone.0025367
[35]
Zhang Q, Leong SC, McNamara PS, Mubarak A, Malley R, et al. (2011) Characterisation of regulatory T cells in nasal associated lymphoid tissue in children: relationships with pneumococcal colonization. PLoS Pathog 7: e1002175. doi: 10.1371/journal.ppat.1002175
[36]
McAleer JP, Kolls JK (2011) Mechanisms controlling Th17 cytokine expression and host defense. J Leukoc Biol 90: 263–270. doi: 10.1189/jlb.0211099
[37]
Marques JM, Rial A, Munoz N, Pellay FX, Van Maele L, et al. (2012) Protection against Streptococcus pneumoniae serotype 1 acute infection shows a signature of Th17- and IFN-gamma-mediated immunity. Immunobiology 217: 420–429. doi: 10.1016/j.imbio.2011.10.012
[38]
Khader SA, Bell GK, Pearl JE, Fountain JJ, Rangel-Moreno J, et al. (2007) IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat Immunol 8: 369–377. doi: 10.1038/ni1449
[39]
Kinjo Y, Illarionov P, Vela JL, Pei B, Girardi E, et al. (2011) Invariant natural killer T cells recognize glycolipids from pathogenic Gram-positive bacteria. Nat Immunol 12: 966–974. doi: 10.1038/ni.2096
[40]
Ivanov S, Fontaine J, Paget C, Macho Fernandez E, Van Maele L, et al. (2012) Key Role for Respiratory CD103+ Dendritic Cells, IFN-gamma, and IL-17 in Protection Against Streptococcus pneumoniae Infection in Response to alpha-Galactosylceramide. J Infect Dis 206: 723–34. doi: 10.1093/infdis/jis413
[41]
Eyerich S, Wagener J, Wenzel V, Scarponi C, Pennino D, et al. (2011) IL-22 and TNF-alpha represent a key cytokine combination for epidermal integrity during infection with Candida albicans. Eur J Immunol 41: 1894–1901. doi: 10.1002/eji.201041197
[42]
Eyerich S, Eyerich K, Pennino D, Carbone T, Nasorri F, et al. (2009) Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J Clin Invest 119: 3573–3585. doi: 10.1172/jci40202
[43]
Sonnenberg GF, Nair MG, Kirn TJ, Zaph C, Fouser LA, et al. (2010) Pathological versus protective functions of IL-22 in airway inflammation are regulated by IL-17A. J Exp Med 207: 1293–1305. doi: 10.1084/jem.20092054
[44]
Jones CE, Chan K (2002) Interleukin-17 stimulates the expression of interleukin-8, growth-related oncogene-alpha, and granulocyte-colony-stimulating factor by human airway epithelial cells. Am J Respir Cell Mol Biol 26: 748–753. doi: 10.1165/ajrcmb.26.6.4757
[45]
Aujla SJ, Chan YR, Zheng M, Fei M, Askew DJ, et al. (2008) IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nat Med 14: 275–281. doi: 10.1038/nm1710
[46]
Da Silva CA, Hartl D, Liu W, Lee CG, Elias JA (2008) TLR-2 and IL-17A in chitin-induced macrophage activation and acute inflammation. J Immunol 181: 4279–4286. doi: 10.4049/jimmunol.181.6.4279
[47]
Song C, Luo L, Lei Z, Li B, Liang Z, et al. (2008) IL-17-producing alveolar macrophages mediate allergic lung inflammation related to asthma. J Immunol 181: 6117–6124. doi: 10.4049/jimmunol.181.9.6117
[48]
Sun K, Gan Y, Metzger DW (2011) Analysis of murine genetic predisposition to pneumococcal infection reveals a critical role of alveolar macrophages in maintaining the sterility of the lower respiratory tract. Infect Immun 79: 1842–1847. doi: 10.1128/iai.01143-10
[49]
McNeela EA, Burke A, Neill DR, Baxter C, Fernandes VE, et al. (2010) Pneumolysin activates the NLRP3 inflammasome and promotes proinflammatory cytokines independently of TLR4. PLoS Pathog 6: e1001191. doi: 10.1371/journal.ppat.1001191
[50]
Kudo M, Melton AC, Chen C, Engler MB, Huang KE, et al. (2012) IL-17A produced by alphabeta T cells drives airway hyper-responsiveness in mice and enhances mouse and human airway smooth muscle contraction. Nat Med 18: 547–554. doi: 10.1038/nm.2684
[51]
Silverpil E, Glader P, Hansson M, Linden A (2011) Impact of interleukin-17 on macrophage phagocytosis of apoptotic neutrophils and particles. Inflammation 34: 1–9. doi: 10.1007/s10753-010-9201-8
[52]
Mellett M, Atzei P, Horgan A, Hams E, Floss T, et al. (2012) Orphan receptor IL-17RD tunes IL-17A signalling and is required for neutrophilia. Nat Commun 3: 1119. doi: 10.1038/ncomms2127
[53]
Higgins SC, Jarnicki AG, Lavelle EC, Mills KH (2006) TLR4 mediates vaccine-induced protective cellular immunity to Bordetella pertussis: role of IL-17-producing T cells. J Immunol 177: 7980–7989. doi: 10.4049/jimmunol.177.11.7980
[54]
Sergejeva S, Ivanov S, Lotvall J, Linden A (2005) Interleukin-17 as a recruitment and survival factor for airway macrophages in allergic airway inflammation. Am J Respir Cell Mol Biol 33: 248–253. doi: 10.1165/rcmb.2004-0213oc
[55]
Tarran R, Trout L, Donaldson SH, Boucher RC (2006) Soluble mediators, not cilia, determine airway surface liquid volume in normal and cystic fibrosis superficial airway epithelia. J Gen Physiol 127: 591–604. doi: 10.1085/jgp.200509468
[56]
Kuestner RE, Taft DW, Haran A, Brandt CS, Brender T, et al. (2007) Identification of the IL-17 receptor related molecule IL-17RC as the receptor for IL-17F. J Immunol 179: 5462–5473. doi: 10.4049/jimmunol.179.8.5462